0000000001033844
AUTHOR
Rodrigo Ferreira De Morais
Force Field for Water over Pt(111): Development, Assessment, and Comparison
Metal/water interfaces are key in many natural and industrial processes, such as corrosion, atmospheric, or environmental chemistry. Even today, the only practical approach to simulate large interfaces between a metal and water is to perform force-field simulations. In this work, we propose a novel force field, GAL17, to describe the interaction of water and a Pt(111) surface. GAL17 builds on three terms: (i) a standard Lennard-Jones potential for the bonding interaction between the surface and water, (ii) a Gaussian term to improve the surface corrugation, and (iii) two terms describing the angular dependence of the interaction energy. The 12 parameters of this force field are fitted again…
Molecular mechanics models for the image charge, a comment on “including image charge effects in the molecular dynamics simulations of molecules on metal surfaces”
We re-investigate the image charge model of Iori and Corni (Iori and Corni, J. Comput. Chem. 2008, 29, 1656). We find that a simple symmetrization of their model allows to obtain quantitatively correct results for the electrostatic interaction of a water molecule with a metallic surface. This symmetrization reduces the magnitude of the electrostatic interaction to less than 10% of the total interaction energy. © 2017 Wiley Periodicals, Inc.