0000000001034092

AUTHOR

Bruno Demé

showing 2 related works from this author

Anomalous water dynamics in brain: a combined diffusion magnetic resonance imaging and neutron scattering investigation

2019

International audience; Water diffusion is an optimal tool for investigating the architecture of brain tissue on which modern medical diagnostic imaging techniques rely. However, intrinsic tissue heterogeneity causes systematic deviations from pure free-water diffusion behaviour. To date, numerous theoretical and empirical approaches have been proposed to explain the non-Gaussian profile of this process. The aim of this work is to shed light on the physics piloting water diffusion in brain tissue at the micrometre-to-atomic scale. Combined diffusion magnetic resonance imaging and first pioneering neutron scattering experiments on bovine brain tissue have been performed in order to probe dif…

Medical diagnosticMaterials science[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/ImagingQuantitative Biology::Tissues and OrgansPhysics::Medical PhysicsBiomedical EngineeringBiophysicsproton dynamicsBioengineeringbrain imagingNeutron scatteringBiochemistryAtomic unitsBiomaterials03 medical and health sciences0302 clinical medicineTissue heterogeneityWater dynamicsNuclear magnetic resonancemedicineAnimalsDiffusion (business)030304 developmental biologydiffusion magnetic resonance imaging0303 health sciencesProton dynamicmedicine.diagnostic_testneutron scatteringBrainWaterMagnetic resonance imagingwater diffusionLife Sciences–Physics interfaceMagnetic Resonance ImagingSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Neutron Diffraction[SDV.IB.IMA] Life Sciences [q-bio]/Bioengineering/ImagingBovine brainBrain imaging; Diffusion magnetic resonance imaging; Neutron scattering; Proton dynamics; Water diffusionCattle030217 neurology & neurosurgeryBiotechnology
researchProduct

Mobility of a Mononucleotide within a Lipid Matrix: A Neutron Scattering Study

2017

International audience; An essential question in studies on the origins of life is how nucleic acids were first synthesized and then incorporated into compartments about 4 billion years ago. A recent discovery is that guided polymerization within organizing matrices could promote a non-enzymatic condensation reaction allowing the formation of RNA-like polymers, followed by encapsulation in lipid membranes. Here, we used neutron scattering and deuterium labelling to investigate 5'-adenosine monophosphate (AMP) molecules captured in a multilamellar phospholipid matrix. The aim of the research was to determine and compare how mononucleotides are captured and differently organized within matric…

0301 basic medicinemultilamellar lipid matrix[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]neutron scattering; multilamellar lipid matrix; mononucleotide mobility; hydrationPhospholipidNeutron scattering010402 general chemistry01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health scienceschemistry.chemical_compoundMoleculelcsh:ScienceLipid bilayerEcology Evolution Behavior and Systematicschemistry.chemical_classification[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry Molecular Biology/Structural Biology [q-bio.BM]neutron scatteringPaleontologyPolymer0104 chemical sciencesmononucleotide mobility[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM]030104 developmental biologyMembranechemistryBiochemistryDeuteriumPolymerizationSpace and Planetary ScienceChemical physicslcsh:Qlipids (amino acids peptides and proteins)hydration
researchProduct