6533b858fe1ef96bd12b63c1
RESEARCH PRODUCT
Anomalous water dynamics in brain: a combined diffusion magnetic resonance imaging and neutron scattering investigation
C. DolceC. DolceBruno DeméJacques OllivierG. LeducIrina PiazzaAntonio CupaneJudith PetersFrancesca NataliEmmanuel L. BarbierM BoehmCalogero Stellettasubject
Medical diagnosticMaterials science[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/ImagingQuantitative Biology::Tissues and OrgansPhysics::Medical PhysicsBiomedical EngineeringBiophysicsproton dynamicsBioengineeringbrain imagingNeutron scatteringBiochemistryAtomic unitsBiomaterials03 medical and health sciences0302 clinical medicineTissue heterogeneityWater dynamicsNuclear magnetic resonancemedicineAnimalsDiffusion (business)030304 developmental biologydiffusion magnetic resonance imaging0303 health sciencesProton dynamicmedicine.diagnostic_testneutron scatteringBrainWaterMagnetic resonance imagingwater diffusionLife Sciences–Physics interfaceMagnetic Resonance ImagingSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Neutron Diffraction[SDV.IB.IMA] Life Sciences [q-bio]/Bioengineering/ImagingBovine brainBrain imaging; Diffusion magnetic resonance imaging; Neutron scattering; Proton dynamics; Water diffusionCattle030217 neurology & neurosurgeryBiotechnologydescription
International audience; Water diffusion is an optimal tool for investigating the architecture of brain tissue on which modern medical diagnostic imaging techniques rely. However, intrinsic tissue heterogeneity causes systematic deviations from pure free-water diffusion behaviour. To date, numerous theoretical and empirical approaches have been proposed to explain the non-Gaussian profile of this process. The aim of this work is to shed light on the physics piloting water diffusion in brain tissue at the micrometre-to-atomic scale. Combined diffusion magnetic resonance imaging and first pioneering neutron scattering experiments on bovine brain tissue have been performed in order to probe diffusion distances up to macromolecular separation. The coexistence of free-like and confined water populations in brain tissue extracted from a bovine right hemisphere has been revealed at the micrometre and atomic scale. The results are relevant for improving the modelling of the physics driving intra- and extracellular water diffusion in brain, with evident benefit for the diffusion magnetic resonance imaging technique, nowadays widely used to diagnose, at the micrometre scale, brain diseases such as ischemia and tumours.
year | journal | country | edition | language |
---|---|---|---|---|
2019-08-01 |