The protein dynamical transition does not require the protein polypeptide chain
We give experimental evidence that the main features of protein dynamics revealed by neutron scattering, i.e., the “protein dynamical transition” and the “boson peak”, do not need the protein polypeptide chain. We show that a rapid increase of hydrogen atoms fluctuations at about 220 K, analogous to the one observed in hydrated myoglobin powders, is also observed in a hydrated amino acids mixture with the chemical composition of myoglobin but lacking the polypeptide chain; in agreement with the protein behavior, the transition is abolished in the dry mixture. Further, an excess of low-frequency vibrational modes around 3 meV, typically observed in protein powders, is also observed in our mi…
Proton dynamics in bacterial spores, a neutron scattering investigation
International audience; Results from first neutron scattering experiments on bacterial spores are reported. The elastic intensities and mean square displacements have a non-linear behaviour as function of temperature, which is in agreement with a model presenting more pronounced variations at around 330 K (57 • C) and 400 K (127 • C). Based on the available literature on thermal properties of bacterial spores, mainly referring to differential scanning calorimetry, they are suggested to be associated to main endothermic transitions induced by coat and/or core bacterial response to heat treatment.
Physical Origin of Anharmonic Dynamics in Proteins: New Insights From Resolution-Dependent Neutron Scattering on Homomeric Polypeptides
Neutron scattering reveals a complex dynamics in polypeptide chains, with two main onsets of anharmonicity whose physical origin and biological role are still debated. In this study the dynamics of strategically selected homomeric polypeptides is investigated with elastic neutron scattering using different energy resolutions and compared with that of a real protein. Our data spotlight the dependence of anharmonic transition temperatures and fluctuation amplitudes on energy resolution, which we quantitatively explain in terms of a two-site model for the protein-hydration water energy landscape. Experimental data strongly suggest that the protein dynamical transition is not a mere resolution …
Hydration dependent dynamics in sol-gel encapsulated myoglobin.
In this work we study the effect of hydration on the dynamics of a protein in confined geometry, i.e. encapsulated in a porous silica matrix. Using elastic neutron scattering we investigate the temperature dependence of the mean square displacements of non-exchangeable hydrogen atoms of sol-gel encapsulated met-myoglobin. The study is extended to samples at 0.2, 0.3 and 0.5 g water/g protein fractions and comparison is made with met-myoglobin powders at the same average hydration and with a dry powder sample. Elastic data are analysed using a model of dynamical heterogeneity to take into account deviations of elastic intensity from gaussian behaviour in a large momentum transfer range and r…
Direct Evidence of the Amino Acid Side Chain and Backbone Contributions to Protein Anharmonicity
Elastic incoherent neutron scattering has been used to study the temperature dependence of the mean-square displacements of nonexchangeable hydrogen atoms in powders of a series of homomeric polypeptides (polyglycine, polyalanine, polyphenylalanine and polyisoleucine) in comparison with myoglobin at the same hydration level (h = 0.2). The aim of the work was to measure the dynamic behavior of different amino acid residues separately and assess the contribution of each type of side chain to the anharmonic dynamics of proteins. The results provide direct experimental evidence that the first anharmonic activation, at approximately 150 K, is largely due to methyl group rotations entering the ti…
Incoherent elastic and quasi-elastic neutron scattering investigation of hemoglobin dynamics.
In this work we investigate the dynamic properties of hemoglobin in glycerolD(8)/D(2)O solution using incoherent elastic (ENS) and quasi-elastic (QENS) neutron scattering. Taking advantage of complementary energy resolutions of backscattering spectrometers at ILL (Grenoble), we explore motions in a large space-time window, up to 1 ns and 14 A; moreover, in order to cover the harmonic and anharmonic protein dynamics regimes, the elastic experiments have been performed over the wide temperature interval of 20-300 K. To study the dependence of the measured dynamics upon the protein quaternary structure, both deoxyhemoglobin (in T quaternary conformation) and carbonmonoxyhemoglobin (in R quater…
Dynamics of myoglobin in confinement: An elastic and quasi-elastic neutron scattering study
In order to clarify the role of hard confinement on protein dynamics, elastic and quasi-elastic neutron scattering experiments have been performed on ferric horse myoglobin in two different systems: the protein embedded in a porous silica matrix, and the corresponding hydrated protein powder. Elastic data have been analysed using two different models (dynamical heterogeneity and anharmonic double-well potential) that take into account deviations of elastic intensity from Gaussian behaviour. The profile of quasi-elastic spectra has been approximated by a combination of Lorentzian and Gaussian components. Comparison between the data relative to the two different samples indicates that geometr…
Anomalous water dynamics in brain: a combined diffusion magnetic resonance imaging and neutron scattering investigation
International audience; Water diffusion is an optimal tool for investigating the architecture of brain tissue on which modern medical diagnostic imaging techniques rely. However, intrinsic tissue heterogeneity causes systematic deviations from pure free-water diffusion behaviour. To date, numerous theoretical and empirical approaches have been proposed to explain the non-Gaussian profile of this process. The aim of this work is to shed light on the physics piloting water diffusion in brain tissue at the micrometre-to-atomic scale. Combined diffusion magnetic resonance imaging and first pioneering neutron scattering experiments on bovine brain tissue have been performed in order to probe dif…
Dynamical properties of water in living cells
With the aim of studying the effect of water dynamics on the properties of biological systems, in this paper, we present a quasi-elastic neutron scattering study on three different types of living cells, differing both in their morphological and tumor properties. The measured scattering signal, which essentially originates from hydrogen atoms present in the investigated systems, has been analyzed using a global fitting strategy using an optimized theoretical model that considers various classes of hydrogen atoms and allows disentangling diffusive and rotational motions. The approach has been carefully validated by checking the reliability of the calculation of parameters and their 99% confi…
Mobility of a Mononucleotide within a Lipid Matrix: A Neutron Scattering Study
International audience; An essential question in studies on the origins of life is how nucleic acids were first synthesized and then incorporated into compartments about 4 billion years ago. A recent discovery is that guided polymerization within organizing matrices could promote a non-enzymatic condensation reaction allowing the formation of RNA-like polymers, followed by encapsulation in lipid membranes. Here, we used neutron scattering and deuterium labelling to investigate 5'-adenosine monophosphate (AMP) molecules captured in a multilamellar phospholipid matrix. The aim of the research was to determine and compare how mononucleotides are captured and differently organized within matric…
Molecular origin and hydration dependence of protein anharmonicity: an elastic neutron scattering study.
Two main onsets of anharmonicity are present in protein dynamics. Neutron scattering on protein hydrated powders revealed a first onset at about 150 K and a second one at about 230 K (the so called dynamical transition). In order to assess the molecular origin of protein anharmonicity, we study different homomeric polypeptides by incoherent elastic neutron scattering, thus disentangling the contribution of different molecular groups in proteins. We show that methyl group rotations are the main contributors to the low temperature onset. Concerning the dynamical transition, we show that it also occurs in absence of side chains; however, the presence and mobility of side chains substantially i…
A benchmark for protein dynamics: Ribonuclease A measured by neutron scattering in a large wavevector-energy transfer range
The dynamics of Ribonuclease A was explored in the full range of time and length-scales accessible by neutron spectroscopy, on time-of-flight, backscattering and spin-echo spectrometers. Samples were examined in dry and hydrated powder forms and in concentrated and dilute solutions. The aim of the study was an experimental characterisation of the full variety of protein dynamics arising from stabilisation forces. The results provide a benchmark against which other sample dynamics can be compared.
Water Dynamics in Neural Tissue
Water dynamics in post-mortem two-years old bovine cerebral right hemisphere has been investigated through Elastic and Quasi-elastic Neutron Scattering. Experimental parameters such as stability in time of the proton dynamics, data reproducibility and changes in the tissues dynamics upon the conservation protocol, cryogenic towards formalin addition, have been carefully investigated. Results are extremely encouraging and comparisons to magnetic resonance imaging findings are discussed.
The Boson Peak of Amyloid Fibrils: Probing the Softness of Protein Aggregates by Inelastic Neutron Scattering
Proteins and polypeptides are characterized by low-frequency vibrations in the terahertz regime responsible for the so-called "boson peak". The shape and position of this peak are related to the mechanical properties of peptide chains. Amyloid fibrils are ordered macromolecular assemblies, spontaneously formed in nature, characterized by unique biological and nanomechanical properties. In this work, we investigate the effects of the amyloid state and its polymorphism on the boson peak. We used inelastic neutron scattering to probe low-frequency vibrations of the glucagon polypeptide in the native state and in two different amyloid morphologies in both dry and hydrated sample states. The dat…
Erratum to: Dynamical properties of water in living cells (Front. Phys, (2018) 13, 1, 138301, 10.1007/s11467-017-0731-5)
In the original publication of the article, the label Q2(A-2) in Fig. 4 should be replaced with Q(A-1). Below is the correct Fig. 4.[Figure not available: see fulltext.]. © 2018, Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature.