0000000000620954
AUTHOR
Jacques Ollivier
Nitrogen Hydrate Cage Occupancy and Bulk Modulus Inferred from Density Functional Theory-Derived Cell Parameters
International audience; Gas clathrate hydrate solid materials, ubiquitous in nature as found either on the ocean floor, permafrost on the Earth, or in extraterrestrial planets and comets, are also technologically relevant, for example, in energy storage or carbon dioxide sequestration. Nitrogen hydrate, in particular, is of great interest as a promoter of the kinetics of the methane replacement reaction by carbon dioxide in natural gas hydrates. This hydrate may also appear in the chemistry of planets wherever nitrogen constitutes the majority of the atmosphere. A fine understanding of the stability of this hydrate under various thermodynamic conditions is thus of utmost importance to asses…
Anomalous water dynamics in brain: a combined diffusion magnetic resonance imaging and neutron scattering investigation
International audience; Water diffusion is an optimal tool for investigating the architecture of brain tissue on which modern medical diagnostic imaging techniques rely. However, intrinsic tissue heterogeneity causes systematic deviations from pure free-water diffusion behaviour. To date, numerous theoretical and empirical approaches have been proposed to explain the non-Gaussian profile of this process. The aim of this work is to shed light on the physics piloting water diffusion in brain tissue at the micrometre-to-atomic scale. Combined diffusion magnetic resonance imaging and first pioneering neutron scattering experiments on bovine brain tissue have been performed in order to probe dif…
Dynamical properties of water in living cells
With the aim of studying the effect of water dynamics on the properties of biological systems, in this paper, we present a quasi-elastic neutron scattering study on three different types of living cells, differing both in their morphological and tumor properties. The measured scattering signal, which essentially originates from hydrogen atoms present in the investigated systems, has been analyzed using a global fitting strategy using an optimized theoretical model that considers various classes of hydrogen atoms and allows disentangling diffusive and rotational motions. The approach has been carefully validated by checking the reliability of the calculation of parameters and their 99% confi…
Mobility of a Mononucleotide within a Lipid Matrix: A Neutron Scattering Study
International audience; An essential question in studies on the origins of life is how nucleic acids were first synthesized and then incorporated into compartments about 4 billion years ago. A recent discovery is that guided polymerization within organizing matrices could promote a non-enzymatic condensation reaction allowing the formation of RNA-like polymers, followed by encapsulation in lipid membranes. Here, we used neutron scattering and deuterium labelling to investigate 5'-adenosine monophosphate (AMP) molecules captured in a multilamellar phospholipid matrix. The aim of the research was to determine and compare how mononucleotides are captured and differently organized within matric…
A benchmark for protein dynamics: Ribonuclease A measured by neutron scattering in a large wavevector-energy transfer range
The dynamics of Ribonuclease A was explored in the full range of time and length-scales accessible by neutron spectroscopy, on time-of-flight, backscattering and spin-echo spectrometers. Samples were examined in dry and hydrated powder forms and in concentrated and dilute solutions. The aim of the study was an experimental characterisation of the full variety of protein dynamics arising from stabilisation forces. The results provide a benchmark against which other sample dynamics can be compared.
Erratum to: Dynamical properties of water in living cells (Front. Phys, (2018) 13, 1, 138301, 10.1007/s11467-017-0731-5)
In the original publication of the article, the label Q2(A-2) in Fig. 4 should be replaced with Q(A-1). Below is the correct Fig. 4.[Figure not available: see fulltext.]. © 2018, Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature.