0000000001034321

AUTHOR

Sylvie Jaillard

showing 3 related works from this author

Whole genome paired-end sequencing elucidates functional and phenotypic consequences of balanced chromosomal rearrangement in patients with developme…

2019

BackgroundBalanced chromosomal rearrangements associated with abnormal phenotype are rare events, but may be challenging for genetic counselling, since molecular characterisation of breakpoints is not performed routinely. We used next-generation sequencing to characterise breakpoints of balanced chromosomal rearrangements at the molecular level in patients with intellectual disability and/or congenital anomalies.MethodsBreakpoints were characterised by a paired-end low depth whole genome sequencing (WGS) strategy and validated by Sanger sequencing. Expression study of disrupted and neighbouring genes was performed by RT-qPCR from blood or lymphoblastoid cell line RNA.ResultsAmong the 55 pat…

AdultMale0301 basic medicineCandidate geneAdolescentDNA Copy Number VariationsDevelopmental Disabilities030105 genetics & heredityGenomeTranslocation GeneticStructural variationChromosome BreakpointsStructure-Activity RelationshipYoung Adult03 medical and health sciencessymbols.namesakeposition effectGeneticsHumansChildGeneGenetic Association StudiesGenetics (clinical)Paired-end tagComputingMilieux_MISCELLANEOUSchromosomal rearrangementsChromosome AberrationsGene RearrangementWhole genome sequencingGeneticsSanger sequencingwhole genome sequencingbiologystructural variationInfantNFIXPhenotype030104 developmental biology[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsintellectual disabilityChild Preschoolbiology.proteinsymbolsFemaleBiomarkers
researchProduct

Widening of the genetic and clinical spectrum of Lamb-Shaffer syndrome, a neurodevelopmental disorder due to SOX5 haploinsufficiency

2020

International audience; PURPOSE: Lamb-Shaffer syndrome (LAMSHF) is a neurodevelopmental disorder described in just over two dozen patients with heterozygous genetic alterations involving SOX5, a gene encoding a transcription factor regulating cell fate and differentiation in neurogenesis and other discrete developmental processes. The genetic alterations described so far are mainly microdeletions. The present study was aimed at increasing our understanding of LAMSHF, its clinical and genetic spectrum, and the pathophysiological mechanisms involved.METHODS: Clinical and genetic data were collected through GeneMatcher and clinical or genetic networks for 41 novel patients harboring various ty…

MaleMedizinHaploinsufficiencyL-SOX5VARIANTS0302 clinical medicineNeurodevelopmental disorderIntellectual disabilityMissense mutation2.1 Biological and endogenous factorsAetiologyChildGenetics (clinical)GeneticsPediatricGenetics & Heredity0303 health sciencesPedigreeFAMILYDNA-Binding Proteinsdevelopmental delayTRANSCRIPTION FACTORSPhenotypeintellectual disabilityChild Preschoolmissense variantsFemalemissense variants.HaploinsufficiencySOXD Transcription FactorsAdultEXPRESSIONAdolescentIntellectual and Developmental Disabilities (IDD)Clinical SciencesMutation MissenseautismCell fate determinationBiologyLONG FORMSEQUENCEArticle03 medical and health sciencesYoung AdultRare DiseasesClinical ResearchCARTILAGEIntellectual DisabilitymedicineGeneticsAnimalsHumansLanguage Development DisordersGenetic Predisposition to DiseasePreschoolTranscription factorGene030304 developmental biology[SDV.GEN]Life Sciences [q-bio]/GeneticsMUTATIONSHuman GenomeInfantmedicine.diseaseBrain DisordersNeurodevelopmental DisordersDeciphering Developmental Disorder StudyMutationAutismepilepsyMissense030217 neurology & neurosurgeryGENERATIONGenetics in Medicine
researchProduct

Incomplete penetrance and phenotypic variability of 6q16 deletions including SIM1.

2015

International audience; 6q16 deletions have been described in patients with a Prader-Willi-like (PWS-like) phenotype. Recent studies have shown that certain rare single-minded 1 (SIM1) loss-of-function variants were associated with a high intra-familial risk for obesity with or without features of PWS-like syndrome. Although SIM1 seems to have a key role in the phenotype of patients carrying 6q16 deletions, some data support a contribution of other genes, such as GRIK2, to explain associated behavioural problems. We describe 15 new patients in whom de novo 6q16 deletions were characterised by comparative genomic hybridisation or single-nucleotide polymorphism (SNP) array analysis, including…

AdultMaleAdolescent[SDV]Life Sciences [q-bio]PenetranceBioinformaticsPolymorphism Single NucleotideArticlePregnancyGRIK2Basic Helix-Loop-Helix Transcription FactorsGeneticsHumansSNPObesityChildGeneGenetic Association StudiesGenetics (clinical)GeneticsComparative Genomic Hybridizationbiology[ SDV ] Life Sciences [q-bio]InfantPenetrancePhenotypeRepressor ProteinsChild PreschoolAborted FetusSIM1biology.proteinChromosomes Human Pair 6FemaleHaploinsufficiencyPrader-Willi SyndromeComparative genomic hybridization
researchProduct