0000000001034335

AUTHOR

Caroline Schluth-bolard

0000-0002-2279-4273

showing 3 related works from this author

Whole genome paired-end sequencing elucidates functional and phenotypic consequences of balanced chromosomal rearrangement in patients with developme…

2019

BackgroundBalanced chromosomal rearrangements associated with abnormal phenotype are rare events, but may be challenging for genetic counselling, since molecular characterisation of breakpoints is not performed routinely. We used next-generation sequencing to characterise breakpoints of balanced chromosomal rearrangements at the molecular level in patients with intellectual disability and/or congenital anomalies.MethodsBreakpoints were characterised by a paired-end low depth whole genome sequencing (WGS) strategy and validated by Sanger sequencing. Expression study of disrupted and neighbouring genes was performed by RT-qPCR from blood or lymphoblastoid cell line RNA.ResultsAmong the 55 pat…

AdultMale0301 basic medicineCandidate geneAdolescentDNA Copy Number VariationsDevelopmental Disabilities030105 genetics & heredityGenomeTranslocation GeneticStructural variationChromosome BreakpointsStructure-Activity RelationshipYoung Adult03 medical and health sciencessymbols.namesakeposition effectGeneticsHumansChildGeneGenetic Association StudiesGenetics (clinical)Paired-end tagComputingMilieux_MISCELLANEOUSchromosomal rearrangementsChromosome AberrationsGene RearrangementWhole genome sequencingGeneticsSanger sequencingwhole genome sequencingbiologystructural variationInfantNFIXPhenotype030104 developmental biology[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsintellectual disabilityChild Preschoolbiology.proteinsymbolsFemaleBiomarkers
researchProduct

Widening of the genetic and clinical spectrum of Lamb-Shaffer syndrome, a neurodevelopmental disorder due to SOX5 haploinsufficiency

2020

International audience; PURPOSE: Lamb-Shaffer syndrome (LAMSHF) is a neurodevelopmental disorder described in just over two dozen patients with heterozygous genetic alterations involving SOX5, a gene encoding a transcription factor regulating cell fate and differentiation in neurogenesis and other discrete developmental processes. The genetic alterations described so far are mainly microdeletions. The present study was aimed at increasing our understanding of LAMSHF, its clinical and genetic spectrum, and the pathophysiological mechanisms involved.METHODS: Clinical and genetic data were collected through GeneMatcher and clinical or genetic networks for 41 novel patients harboring various ty…

MaleMedizinHaploinsufficiencyL-SOX5VARIANTS0302 clinical medicineNeurodevelopmental disorderIntellectual disabilityMissense mutation2.1 Biological and endogenous factorsAetiologyChildGenetics (clinical)GeneticsPediatricGenetics & Heredity0303 health sciencesPedigreeFAMILYDNA-Binding Proteinsdevelopmental delayTRANSCRIPTION FACTORSPhenotypeintellectual disabilityChild Preschoolmissense variantsFemalemissense variants.HaploinsufficiencySOXD Transcription FactorsAdultEXPRESSIONAdolescentIntellectual and Developmental Disabilities (IDD)Clinical SciencesMutation MissenseautismCell fate determinationBiologyLONG FORMSEQUENCEArticle03 medical and health sciencesYoung AdultRare DiseasesClinical ResearchCARTILAGEIntellectual DisabilitymedicineGeneticsAnimalsHumansLanguage Development DisordersGenetic Predisposition to DiseasePreschoolTranscription factorGene030304 developmental biology[SDV.GEN]Life Sciences [q-bio]/GeneticsMUTATIONSHuman GenomeInfantmedicine.diseaseBrain DisordersNeurodevelopmental DisordersDeciphering Developmental Disorder StudyMutationAutismepilepsyMissense030217 neurology & neurosurgeryGENERATIONGenetics in Medicine
researchProduct

Am J Hum Genet

2019

ZMIZ1 is a coactivator of several transcription factors, including p53, the androgen receptor, and NOTCH1. Here, we report 19 subjects with intellectual disability and developmental delay carrying variants in ZMIZ1. The associated features include growth failure, feeding difficulties, microcephaly, facial dysmorphism, and various other congenital malformations. Of these 19, 14 unrelated subjects carried de novo heterozygous single-nucleotide variants (SNVs) or single-base insertions/deletions, 3 siblings harbored a heterozygous single-base insertion, and 2 subjects had a balanced translocation disrupting ZMIZ1 or involving a regulatory region of ZMIZ1. In total, we identified 13 point mutat…

0301 basic medicineMaleMicrocephaly[SDV]Life Sciences [q-bio]Developmental DisabilitiesAucunBiology030226 pharmacology & pharmacyTransactivation03 medical and health sciencesMiceNeurodevelopmental disorder0302 clinical medicineReportIntellectual DisabilityCoactivatormedicineGeneticsAnimalsHumansPoint MutationAlleleChildExomeGenetics (clinical)Alleles030304 developmental biologyGenetics0303 health sciencesPoint mutationCorrectionInfantSyndromemedicine.diseaseAndrogen receptor030104 developmental biologyChild PreschoolFemale030217 neurology & neurosurgeryTranscription Factors
researchProduct