0000000001034412
AUTHOR
Micael J. T. Oliveira
Time-dependent density-functional theory of strong-field ionization of atoms by soft x rays
Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).-- et al.
Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems.
This Open Access Article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems
Over the last few years, extraordinary advances in experimental and theoretical tools have allowed us to monitor and control matter at short time and atomic scales with a high degree of precision. An appealing and challenging route toward engineering materials with tailored properties is to find ways to design or selectively manipulate materials, especially at the quantum level. To this end, having a state-of-the-art ab initio computer simulation tool that enables a reliable and accurate simulation of light-induced changes in the physical and chemical properties of complex systems is of utmost importance. The first principles real-space-based Octopus project was born with that idea in mind,…
Toward an all-round semi-local potential for the electronic exchange
We test local and semi-local density functionals for the electronic exchange for a variety of systems including atoms, molecules, and atomic chains. In particular, we focus on a recent universal extension of the Becke-Johnson exchange potential [E. R\"as\"anen, S. Pittalis, and C. R. Proetto, J. Chem. Phys. 132, 044112 (2010)]. It is shown that when this potential is used together with the Becke-Roussel approximation to the Slater potential [A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989)], a good overall agreement is obtained with experimental and numerically exact results for several systems, and with a moderate computational cost. Thus, this approximation is a very promising …