0000000001034559

AUTHOR

Esther Giraldo

0000-0001-5488-3011

P3‐183: Role of RCAN1, a gene involved in the adaptation to oxidative stress, in Alzheimer's pathology

research product

Aβ and tau toxicities in Alzheimer’s are linked via oxidative stress-induced p38 activation: Protective role of vitamin E

AbstractOxidative stress is a hallmark of Alzheimer’s disease (AD). We propose that rather than causing damage because of the action of free radicals, oxidative stress deranges signaling pathways leading to tau hyperphosphorylation, a hallmark of the disease. Indeed, incubation of neurons in culture with 5 µM beta-amyloid peptide (Aβ) causes an activation of p38 MAPK (p38) that leads to tau hyperphosphorylation. Inhibition of p38 prevents Aβ-induced tau phosphorylation. Aβ-induced effects are prevented when neurons are co-incubated with trolox (the water-soluble analog of vitamin E).We have confirmed these results in vivo, in APP/PS1 double transgenic mice of AD. We have found that APP/PS1 …

research product

Oxidative Stress And Ubiquitin Ligases: Their Involvement In Alzheimer’s Disease Pathophysiology

Oxidative stress is a major hallmark in Alzheimer’s Disease. We showed that amyloid beta (Aβ 1-42 ), induces mitochondrial oxidative stress. We focused on dysregulations of ubiquitin ligases in Alzheimer’s and their relation to oxidative stress. The anaphase-promoting complex/cyclosome (APC/C)-Cdh1 ubiquitin ligase has a role as cell cycle regulator in proliferating cells and, recently another role in the regulation the degradation of key glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase-3 has been found (Almeida et al., 2012). Herrero-Mendez et al. observed in 2009 that inhibition of Cdh1 leads to an upregulation of Pfkfb3 in neurons and that this results in the activ…

research product

Reductive Stress: A New Concept in Alzheimer's Disease

Reactive oxygen species play a physiological role in cell signaling and also a pathological role in diseases, when antioxidant defenses are overwhelmed causing oxidative stress. However, in this review we will focus on reductive stress that may be defined as a pathophysiological situation in which the cell becomes more reduced than in the normal, resting state. This may occur in hypoxia and also in several diseases in which a small but persistent generation of oxidants results in a hormetic overexpression of antioxidant enzymes that leads to a reduction in cell compartments. This is the case of Alzheimer's disease. Individuals at high risk of Alzheimer's (because they carry the ApoE4 allele…

research product

Amyloid-β toxicity and tau hyperphosphorylation are linked via RCAN1 in Alzheimer's disease.

Amyloid-β peptide (Aβ) toxicity and tau hyperphosphorylation are hallmarks of Alzheimer’s disease (AD). How their molecular relationships may affect the etiology, progression, and severity of the disease, however, has not been elucidated. We now report that incubation of foetal rat cortical neurons with Aβ up-regulates expression of the Regulator of Calcineurin gene RCAN1, and this is mediated by Aβ-induced oxidative stress. Calcineurin (PPP3CA) is a serine-threonine phosphatase that dephosphorylates tau. RCAN1 proteins inhibit this phosphatase activity of calcineurin. Increased expression of RCAN1 also causes up-regulation of glycogen synthase kinase-3beta (GSK3β), a tau kinase. Thus, incr…

research product

Autoantibodies Profile in Matching CSF and Serum from AD and aMCI patients: Potential Pathogenic Role and Link to Oxidative Damage.

Abstract Alzheimer disease (AD) is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. Amyloid-s-peptide (As) forms senile plaques, which, together with hyperphosphorylated tau-based neurofibrillary tangles, are the hallmarks of AD neuropathology. Evidence support the involvement of immune system in AD progression and current concepts regarding its pathogenesis include the participation of inflammatory and autoimmune components in the neurodegenerative process. Pathologically, immune system components have been detected in the brain, cerebrospinal fluid (CSF) and in serum of AD subjects and their trend of variation correlates …

research product

Excitotoxicity in AD is partially caused by the inactivation of APC/C-Cdh1 E3 Ubiquitin Ligase

research product

Increased basal antioxidant levels in RCAN1 - deficient mice lowers oxidative injury after acute paraquat insult.

RCAN1 is an inhibitor of the phosphatase calcineurin, which is involved in the regulation of oxidative stress and apoptosis, among other important cell processes. Here we have used RCAN1 deficient mice (RCAN1-/-) to elucidate its role after an acute oxidative insult such as paraquat injection. We have observed that RCAN1-/- mice show less oxidative damage than wildtype (WT) mice after treatment. Under basal conditions, RCAN1-/- animals express more calcineurin, heme oxygenase-1, Nrf2, and catalase compared to WT mice (controls). This may explain the less severe effect of paraquat treatment on RCAN1-/- mice compared to WT. We showed that oxidative stress is involved in the early stages of ap…

research product

Serum Levels of Clusterin, PKR, and RAGE Correlate with Amyloid Burden in Alzheimer's Disease.

Background: Alzheimer’s disease (AD) is the most common form of dementia and biomarkers are essential to help in the diagnosis of this disease. Image techniques and cerebrospinal fluid (CSF) biomarkers are limited in their use because they are expensive or invasive. Thus, the search for blood-borne biomarkers is becoming central to the medical community. Objective: The main objective of this study is the evaluation of three serum proteins as potential biomarkers in AD patients. Methods: We recruited 27 healthy controls, 19 mild cognitive impairment patients, and 17 AD patients. Using the recent A/T/N classification we split our population into two groups (AD and control). We used ELISA kits…

research product

Aβ Induces Excitotoxicity Mediated by APC/C-Cdh1 Depletion That Can Be Prevented by Glutaminase Inhibition Promoting Neuronal Survival

AbstractThe E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) is activated by the fizzy-related protein homolog/CDC20-like protein 1 (cdh1) in post-mitotic neurons. Growing evidence suggests that dysregulation of APC/C-Cdh1 is involved in neurodegenerative diseases. Here we show in neurons that oligomers of amyloid beta (Aβ), a peptide related to Alzheimer’s disease, cause proteasome-dependent degradation of cdh1. This leads to a subsequent increase in glutaminase (a degradation target of APC/C-Cdh1), which causes an elevation of glutamate levels and further intraneuronal Ca2+ dysregulation, resulting in neuronal apoptosis. Glutaminase inhibition prevents glutamate excitotoxi…

research product

Oxidative signature of cerebrospinal fluid from mild cognitive impairment and Alzheimer disease patients

Abstract Background Several studies suggest that pathological changes in Alzheimer’s disease (AD) brain begin around 10–20 years before the onset of cognitive impairment. Biomarkers that can support early diagnosis and predict development of dementia would, therefore, be crucial for patient care and evaluation of drug efficacy. Although cerebrospinal fluid (CSF) levels of Aβ42, tau, and p-tau are well-established diagnostic biomarkers of AD, there is an urgent need to identify additional molecular alterations of neuronal function that can be evaluated at the systemic level. Objectives This study was focused on the analysis of oxidative stress-related modifications of the CSF proteome, from …

research product

Reductive stress in young healthy individuals at risk of Alzheimer disease.

Oxidative stress is a hallmark of Alzheimer disease (AD) but this has not been studied in young healthy persons at risk of the disease. Carrying an Apo e4 allele is the major genetic risk factor for AD. We have observed that lymphocytes from young, healthy persons carrying at least one Apo e4 allele suffer from reductive rather than oxidative stress, i.e., lower oxidized glutathione and P-p38 levels and higher expression of enzymes involved in antioxidant defense, such as glutamylcysteinyl ligase and glutathione peroxidase. In contrast, in the full-blown disease, the situation is reversed and oxidative stress occurs, probably because of the exhaustion of the antioxidant mechanisms just ment…

research product

Antioxidant Pathways in Alzheimers Disease: Possibilities of Intervention

Alzheimer's disease (AD) is closely related to the occurrence of oxidative stress. It was claimed that all pathophysiological mechanisms involved in the onset and progression of AD are related to oxidative stress. Thus, it is important to evaluate if there is oxidative stress as well as the mechanism by which this happens in AD patients as well as in animal models of AD. Extracellular plaques of amyloid b peptides (Aβ), a hallmark of the disease, have been postulated to be more protective than damaging in terms of oxidative stress because they may be chemical sinks in which heavy metals are placed. More than a decade ago we reasoned that damage due to Ab might be caused not by extracellular…

research product

Molecular mechanisms linking amyloid β toxicity and Tau hyperphosphorylation in Alzheimer׳s disease

Neurofibrillary tangles (aggregates of cytoskeletal Tau protein) and senile plaques (aggregates mainly formed by amyloid β peptide) are two landmark lesions in Alzheimer׳s disease. Some researchers have proposed tangles, whereas others have proposed plaques, as primary lesions. For a long time, these were thought of as independent mechanisms. However, experimental evidence suggests that both lesions are intimately related. We review here some molecular pathways linking amyloid β and Tau toxicities involving, among others, glycogen synthase kinase 3β, p38, Pin1, cyclin-dependent kinase 5, and regulator of calcineurin 1. Understanding amyloid β and Tau toxicities as part of a common pathophys…

research product

Is antioxidant therapy effective to treat alzheimer's disease?

Alzheimer’s disease (AD) is a neurodegenerative process associated with oxidative stress. In the past, it was claimed that all neuronal lesions involved in the onset and progression of AD were related to oxidative stress. Today, we know that intracellular amyloid beta (Ab) could play a central role in the pathophysiology of the disease. Ab binds to heme groups in mitochondrial membranes causing electron transport chain impairment and loss of respiratory function. The experimental evidence of such oxidative stress leads to the basis for treatment of AD with antioxidants. Many clinical trials have been developed to clarify whether antioxidants are beneficial in AD treatment. However, the resu…

research product

P4‐256: POSITIVE FEEDBACK LOOP OF APC/C‐CDH1‐MEDIATED EXCITOTOXICITY IN ALZHEIMER'S DISEASE

research product

Lymphocytes from young healthy persons carrying the ApoE4 allele overexpress stress-related proteins involved in the pathophysiology of Alzheimer's disease.

Abstract Apolipoprotein E4 (ApoE4) is a major genetic risk factor for the development of Alzheimer's disease (AD). The aim of this work was to find if carrying ApoE4 alleles correlates with molecular changes associated with specific processes involved in AD pathophysiology and whether they are useful as early biomarkers of AD. Fifty four young healthy adults (aged 20-55) were recruited. Of these, 33 carried at least one ApoE4 allele and 21 did not (ApoE 3/3). We also recruited eleven patients with clinical diagnoses of probable AD and nine persons of similar age without dementia who served as controls of the AD patients. Using peripheral lymphocytes, we measured RNA expression of glycogen s…

research product