0000000001034598

AUTHOR

Z. Meisel

Measurement of key resonance states for the P30(p,γ)S31 reaction rate, and the production of intermediate-mass elements in nova explosions

We report the first experimental constraints on spectroscopic factors and strengths of key resonances in the P30(p,γ)S31 reaction critical for determining the production of intermediate-mass elements up to Ca in nova ejecta. The P30(d,n)S31 reaction was studied in inverse kinematics using the GRETINA γ -ray array to measure the angle-integrated cross-sections of states above the proton threshold. In general, negative-parity states are found to be most strongly produced but the absolute values of spectroscopic factors are typically an order of magnitude lower than predicted by the shell-model calculations employing WBP Hamiltonian for the negative-parity states. The results clearly indicat…

research product

Horizons: Nuclear Astrophysics in the 2020s and Beyond

Nuclear astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated.We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field…

research product

Determining therp-Process Flow throughNi56: Resonances inCu57(p,γ)Zn58Identified with GRETINA

An approach is presented to experimentally constrain previously unreachable (p, γ) reaction rates on nuclei far from stability in the astrophysical rp process. Energies of all critical resonances in the (57)Cu(p,γ)(58)Zn reaction are deduced by populating states in (58)Zn with a (d, n) reaction in inverse kinematics at 75 MeV/u, and detecting γ-ray-recoil coincidences with the state-of-the-art γ-ray tracking array GRETINA and the S800 spectrograph at the National Superconducting Cyclotron Laboratory. The results reduce the uncertainty in the (57)Cu(p,γ) reaction rate by several orders of magnitude. The effective lifetime of (56)Ni, an important waiting point in the rp process in x-ray burst…

research product