0000000001035439

AUTHOR

Aku Lempelto

Exploring CO2 hydrogenation to methanol at a CuZn–ZrO2 interface via DFT calculations

Multi-component heterogeneous catalysts are among the top candidates for converting greenhouse gases into valuable compounds. Combinations of Cu, Zn, and ZrO2 (CZZ) have emerged as promisingly efficient catalysts for CO2 hydrogenation to methanol. To explore the catalytic mechanism, density functional theory (DFT) calculations and the energetic span model (ESM) were used to study CO2 conversion routes to methanol on CuZn–ZrO2 interfaces with a varying Zn content. Our results demonstrate that the presence of Zn sites at the interface improves CO2 binding. However, the adsorption and activation energies are insensitive to Zn concentration. The calculations also show that the hydrogenation of …

research product

Influence of a Cu–zirconia interface structure on CO2 adsorption and activation

CO2 adsorption and activation on a catalyst are key elementary steps for CO2 conversion to various valuable products. In the present computational study, we screened different Cu–ZrO2 interface structures and analyzed the influence of the interface structure on CO2 binding strength using density functional theory calculations. Our results demonstrate that a Cu nanorod favors one position on both tetragonal and monoclinic ZrO2 surfaces, where the bottom Cu atoms are placed close to the lattice oxygens. In agreement with previous calculations, we find that CO2 prefers a bent bidentate configuration at the Cu–ZrO2 interface and the molecule is clearly activated being negatively charged. Strain…

research product

Effect of atomic layer deposited zinc promoter on the activity of copper-on-zirconia catalysts in the hydrogenation of carbon dioxide to methanol

Funding Information: The work at Aalto University has been financially supported by the Academy of Finland (COOLCAT consortium, decision no. 329977 and 329978 ; ALDI consortium, decision no. 331082 ). This work made use of Aalto University Bioeconomy, OtaNano and RawMatters infrastructure. Hannu Revitzer (Aalto University) is thanked for the ICP-OES analysis, Aalto workshop people (especially Seppo Jääskeläinen) for working on the reactor modifications. The DFT calculations were made possible by computational resources provided by the CSC — IT Center for Science, Espoo, Finland ( https://www.csc.fi/en/ ) and computer capacity from the Finnish Grid and Cloud Infrastructure (urn:nbn:fi:resear…

research product

Influence of a Cu–zirconia interface structure on CO2 adsorption and activation

CO2 adsorption and activation on a catalyst are key elementary steps for CO2 conversion to various valuable products. In the present computational study, we screened different Cu–ZrO2 interface structures and analyzed the influence of the interface structure on CO2 binding strength using density functional theory calculations. Our results demonstrate that a Cu nanorod favors one position on both tetragonal and monoclinic ZrO2 surfaces, where the bottom Cu atoms are placed close to the lattice oxygens. In agreement with previous calculations, we find that CO2 prefers a bent bidentate configuration at the Cu–ZrO2 interface and the molecule is clearly activated being negatively charged. Strain…

research product