0000000001036687

AUTHOR

Peter Kratzer

showing 3 related works from this author

Indium-Gallium Segregation inCuInxGa1−xSe2: AnAb Initio–Based Monte Carlo Study

2010

Thin-film solar cells with ${\mathrm{CuIn}}_{x}{\mathrm{Ga}}_{1\ensuremath{-}x}{\mathrm{Se}}_{2}$ (CIGS) absorber are still far below their efficiency limit, although lab cells already reach 20.1%. One important aspect is the homogeneity of the alloy. Large-scale simulations combining Monte Carlo and density functional calculations show that two phases coexist in thermal equilibrium below room temperature. Only at higher temperatures, CIGS becomes more and more a homogeneous alloy. A larger degree of inhomogeneity for Ga-rich CIGS persists over a wide temperature range, which contributes to the observed low efficiency of Ga-rich CIGS solar cells.

Thermal equilibriumMaterials scienceCondensed matter physicsMonte Carlo methodAlloyAb initioGeneral Physics and Astronomychemistry.chemical_elementThermodynamicsAstrophysics::Cosmology and Extragalactic Astrophysicsengineering.materialAtmospheric temperature rangeCopper indium gallium selenide solar cellschemistryengineeringGalliumIndiumPhysical Review Letters
researchProduct

Reduced thermal conductivity of TiNiSn/HfNiSn superlattices

2015

Diminution of the thermal conductivity is a crucial aspect in thermoelectric research. We report a systematic and significant reduction of the cross-plane thermal conductivity in a model system consisting of DC sputtered TiNiSn and HfNiSn half-Heusler superlattices. The reduction of $\kappa$ is measured by the 3$\omega$ method and originates from phonon scattering at the internal interfaces. Heat transport in the superlattices is calculated based on Boltzmann transport theory, including a diffusive mismatch model for the phonons at the internal interfaces. Down to superlattice periodicity of 3 nm the phonon spectrum mismatch between the superlattice components quantitatively explains the re…

Condensed Matter - Materials ScienceMaterials sciencePhonon scatteringCondensed matter physicsPhononSuperlatticeMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesPhysik (inkl. Astronomie)Condensed Matter PhysicsThermal conductionCondensed Matter::Mesoscopic Systems and Quantum Hall EffectElectronic Optical and Magnetic MaterialsCrystalsymbols.namesakeCondensed Matter::Materials ScienceThermal conductivityThermoelectric effectBoltzmann constantsymbols
researchProduct

Spin caloric transport from density-functional theory

2019

Spin caloric transport refers to the coupling of heat with spin transport. Its applications primarily concern the generation of spin currents and control of magnetisation by temperature gradients for information technology, known by the synonym spin caloritronics. Within the framework of ab initio theory, new tools are being developed to provide an additional understanding of these phenomena in realistic materials, accounting for the complexity of the electronic structure without adjustable parameters. Here, we review this progress, summarising the principles of the density-functional-based approaches in the field and presenting a number of application highlights. Our discussion includes th…

spintronicsMaterials scienceAcoustics and UltrasonicsSpintronicsCondensed matter physicsthermal spin torqueCaloric theory02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesspin Nernst effectSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsspin Seebeck effectdensity functional calculations0103 physical sciencesspin caloritronicsDensity functional theoryCondensed Matter::Strongly Correlated Electronsmagneto-Seebeck effect010306 general physics0210 nano-technologySpin-½
researchProduct