RDF* Graph Database as Interlingua for the TextWorld Challenge
This paper briefly describes the top-scoring submission to the First TextWorld Problems: A Reinforcement and Language Learning Challenge. To alleviate the partial observability problem, characteristic to the TextWorld games, we split the Agent into two independent components: Observer and Actor, communicating only via the Interlingua of the RDF* graph database. The RDF* graph database serves as the “world model” memory incrementally updated by the Observer via FrameNet informed Natural Language Understanding techniques and is used by the Actor for the efficient exploration and planning of the game Action sequences. We find that the deep-learning approach works best for the Observer componen…