The number of lifts of a Brauer character with a normal vertex
AbstractIn this paper we examine the behavior of lifts of Brauer characters in p-solvable groups. In the main result, we show that if φ∈IBr(G) has a normal vertex Q and either p is odd or Q is abelian, then the number of lifts of φ is at most |Q:Q′|. As a corollary, we prove that if φ∈IBr(G) has an abelian vertex subgroup Q, then the number of lifts of φ in Irr(G) is at most |Q|.