Stationary problems for equation of the KdV type and dynamical r-matrices
We study a quite general family of dynamical $r$-matrices for an auxiliary loop algebra ${\cal L}({su(2)})$ related to restricted flows for equations of the KdV type. This underlying $r$-matrix structure allows to reconstruct Lax representations and to find variables of separation for a wide set of the integrable natural Hamiltonian systems. As an example, we discuss the Henon-Heiles system and a quartic system of two degrees of freedom in detail.