0000000001039070

AUTHOR

Antonino Giorgio Spera

showing 6 related works from this author

ON AUTOMORPHISMS OF GENERALIZED ALGEBRAIC-GEOMETRY CODES.

2007

Abstract We consider a class of generalized algebraic-geometry codes based on places of the same degree of a fixed algebraic function field over a finite field F / F q . We study automorphisms of such codes which are associated with automorphisms of F / F q .

Algebraic function fieldDiscrete mathematicsAlgebraic cycleFinite fieldFunction field of an algebraic varietyAlgebra and Number TheoryAutomorphisms of the symmetric and alternating groupsAlgebraic extensionAlgebraic geometryAutomorphismMathematics
researchProduct

Divisible designs and groups

1992

We study (s, k, λ1, λ2)-translation divisible designs with λ1≠0 in the singular and semi-regular case. Precisely, we describe singular (s, k, λ1, λ2)-TDD's by quasi-partitions of suitable quotient groups or subgroups of their translation groups. For semi-regular (s, k, λ1, λ2)-TDD's (and, more general, for the case λ2>λ1) we prove that their translation groups are either Frobenius groups or p-groups of exponent p. Some examples are given for the singular, semi-regular and regular case.

Pure mathematicsDifferential geometryHyperbolic geometryExponentGeometry and TopologyAlgebraic geometryArithmeticFrobenius groupTranslation (geometry)Quotient groupMathematicsProjective geometryGeometriae Dedicata
researchProduct

Asymptotically good codes from generalized algebraic-geometry codes

2005

We consider generalized algebraic-geometry codes, based on places of the same degree of a fixed algebraic function field over a finite field. In this note, using a method similar to the Justesen's one, we construct a family of such codes which is asymptotically good.

Algebraic function fieldBlock codeDiscrete mathematicsFunction field of an algebraic varietyApplied MathematicsReal algebraic geometryAlgebraic extensionAlgebraic functionLinear codeExpander codeComputer Science ApplicationsMathematics
researchProduct

On Geometric Goppa codes on Fermat curves.

2006

researchProduct

On divisible designs and twisted field planes

1999

CombinatoricsTheoretical physicsField (physics)Discrete Mathematics and CombinatoricsMathematicsJournal of Combinatorial Designs
researchProduct

Automorphisms of hyperelliptic GAG-codes

2009

Abstract We determine the n –automorphism group of generalized algebraic-geometry codes associated with rational, elliptic and hyperelliptic function fields. Such group is, up to isomorphism, a subgroup of the automorphism group of the underlying function field.

Abelian varietyDiscrete mathematicsautomorphismsGroup (mathematics)Applied Mathematicsgeneralized algebraic geometry codes.Outer automorphism groupReductive groupAutomorphismTheoretical Computer ScienceCombinatoricsMathematics::Group Theorygeometric Goppa codeAlgebraic groupDiscrete Mathematics and Combinatoricsalgebraic function fieldsSettore MAT/03 - GeometriaIsomorphismfinite fieldsGeometric Goppa codesfinite fieldalgebraic function fieldHyperelliptic curvegeneralized algebraic-geometry codesMathematicsDiscrete Mathematics
researchProduct