0000000001040000

AUTHOR

Yvan Moënne-loccoz

showing 6 related works from this author

Nodulating symbiotic bacteria and soil quality

2005

Chapitre 9 : Plant microbe interactions and soil quality Partie : 9-2; International audience

[SDE] Environmental SciencesFixation de l'azotehttp://aims.fao.org/aos/agrovoc/c_7170http://aims.fao.org/aos/agrovoc/c_2736[SDV]Life Sciences [q-bio]Biologie du solSymbioseNITROGEN FIXATIONnodosité racinaireFertilité du solhttp://aims.fao.org/aos/agrovoc/c_27939LégumineuseBactérie fixatrice de l'azotehttp://aims.fao.org/aos/agrovoc/c_7563http://aims.fao.org/aos/agrovoc/c_4255P35 - Fertilité du solhttp://aims.fao.org/aos/agrovoc/c_7160P34 - Biologie du solhttp://aims.fao.org/aos/agrovoc/c_27601[SDV] Life Sciences [q-bio]PLANT ROOTS[SDE]Environmental SciencesÉvaluationU30 - Méthodes de recherchehttp://aims.fao.org/aos/agrovoc/c_5196http://aims.fao.org/aos/agrovoc/c_6563Rhizobium
researchProduct

Impact of inoculation with the phytostimulatory PGPR Azospirillum lipoferum CRT1 on the genetic structure of the rhizobacterial community of field-gr…

2009

International audience; The phytostimulatory PGPR Azospirillum lipoferum CRT1 was inoculated to maize seeds and the impact on the genetic structure of the rhizobacterial community in the field was determined during maize growth by Automated Ribosomal Intergenic Spacer Analysis (ARISA) of rhizosphere DNA extracts. ARISA fingerprints could differ from one plant to the next as well as from one sampling to the next. Inoculation with strain CRT1 enhanced plant-to-plant variability of the ARISA fingerprints and caused a statistically significant shift in the composition of the indigenous rhizobacterial community at the first two samplings. This is the first study on the ecological impact of Azosp…

Ribosomal Intergenic Spacer analysisSoil ScienceBiology[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil studyRhizobacteriaMicrobiologyAzospirillum Rhizosphere ARISA Fingerprint Bacterial community Impact03 medical and health sciencesMicrobial ecologyBotanyPoaceae[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMicrobial inoculant[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biology030304 developmental biology2. Zero hunger0303 health sciencesRhizosphere[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyInoculationfood and beverages04 agricultural and veterinary sciencesHorticultureAzospirillum lipoferum040103 agronomy & agriculture0401 agriculture forestry and fisheries[SDE.BE]Environmental Sciences/Biodiversity and Ecology
researchProduct

Micro-organismes et interactions biotiques

2011

International audience

[SDV] Life Sciences [q-bio]type d'interaction[SDV]Life Sciences [q-bio]caractère fondamental du vivantinteractionComputingMilieux_MISCELLANEOUS
researchProduct

Plant growth-promoting rhizobacteria and root system functioning.

2013

International audience; The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR s…

0106 biological sciencesfunctional group[SDV]Life Sciences [q-bio]plant nutritionPlant ScienceReview ArticleRoot hairBiologylcsh:Plant culturephytohormoneRhizobacteria01 natural sciences03 medical and health sciencesplant-PGPR cooperationplant-PGPR cooperation;rhizo-microbiome;rhizosphere;phytohormone;plant nutrition;ISR;functional groupBotanylcsh:SB1-1110Plant breedingISRFunctional group (ecology)2. Zero hungerAbiotic component0303 health sciencesRhizosphereBiotic component030306 microbiologybusiness.industryfungifood and beveragesrhizo-microbiome15. Life on landBiotechnologyLateral root branchingbusinessrhizosphere010606 plant biology & botanyFrontiers in plant science
researchProduct

Microorganisms and Biotic Interactions

2014

SPE IPM; Most ecosystems are populated by a large number of diversified microorganisms, which interact with one another and form complex interaction networks. In addition, some of these microorganisms may colonize the surface or internal parts of plants and animals, thereby providing an additional level of interaction complexity. These microbial relations range from intraspecific to interspecific interactions, and from simple short-term interactions to intricate long-term ones. They have played a key role in the formation of plant and animal kingdoms, often resulting in coevolution; they control the size, activity level, and diversity patterns of microbial communities. Therefore, they modul…

commensalismmutualism[SDV]Life Sciences [q-bio]media_common.quotation_subjectEcology (disciplines)parasitismcheatermicrobiomeBiologyinfectious diseasesCompetition (biology)trophic networks[SDV.BV]Life Sciences [q-bio]/Vegetal Biologydefensive mutualistEcosystemCoevolutionmedia_commonTrophic levelagronomyEcologybiogeochemical cyclesInterspecific competitionEcological engineeringantagonismsymbiosisvirulencehostecosystem functioningparasite[SDE]Environmental SciencesSustainabilitypredationcompetition
researchProduct

Micro-organismes et interactions biotiques. Chapitre 11

2011

Partie 3: Les habitats microbiens: diversité, adaptation et interactions; National audience

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencestype d'interaction[SDV]Life Sciences [q-bio][SDE]Environmental Sciencescaractère fondamental du vivantinteraction
researchProduct