Some Nonlinear Methods in Fréchet Operator Rings and Ψ*-Algebras
Two different inverse function theorems, one of Nash-Moser type, the other due to H. Omori, are extended to obtain special surjectivity results in locally convex and locally pseudo-convex Frechet algebras generated by group actions and derivations. In particular, the following factorization problem is discussed. Let Ψ be a locally pseudo-convex Frechet algebra with unit e and T+ : Ψ Ψ a continuous linear operator. Does there exist a neighborhood U of 0 such that the equation where T- = IΨ- T, has a solution x ∈ Ψ for every y ∈ U?