0000000001040233
AUTHOR
Paolo Ghinassi
Quantitative View on the Processes Governing the Upscale Error Growth up to the Planetary Scale Using a Stochastic Convection Scheme
Abstract Two diagnostics based on potential vorticity and the envelope of Rossby waves are used to investigate upscale error growth from a dynamical perspective. The diagnostics are applied to several cases of global, real-case ensemble simulations, in which the only difference between the ensemble members lies in the random seed of the stochastic convection scheme. Based on a tendency equation for the enstrophy error, the relative importance of individual processes to enstrophy-error growth near the tropopause is quantified. After the enstrophy error is saturated on the synoptic scale, the envelope diagnostic is used to investigate error growth up to the planetary scale. The diagnostics re…
Local Finite-Amplitude Wave Activity as a Diagnostic for Rossby Wave Packets
AbstractUpper-tropospheric Rossby wave packets (RWPs) are important dynamical features, because they are often associated with weather systems and sometimes act as precursors to high-impact weather. The present work introduces a novel diagnostic to identify RWPs and to quantify their amplitude. It is based on the local finite-amplitude wave activity (LWA) of Huang and Nakamura, which is generalized to the primitive equations in isentropic coordinates. The new diagnostic is applied to a specific episode containing large-amplitude RWPs and compared with a more traditional diagnostic based on the envelope of the meridional wind. In this case, LWA provides a more coherent picture of the RWPs an…
A Budget Equation for the Amplitude of Rossby Wave Packets Based on Finite-Amplitude Local Wave Activity
AbstractRecently, the authors proposed a novel diagnostic to quantify the amplitude of Rossby wave packets. This diagnostic extends the local finite-amplitude wave activity (LWA) of N. Nakamura and collaborators to the primitive-equations framework and combines it with a zonal filter to remove the phase dependence. In the present work, this diagnostic is used to investigate the dynamics of upper-tropospheric Rossby wave packets, with a particular focus on distinguishing between conservative dynamics and nonconservative processes. For this purpose, a budget equation for filtered LWA is derived and its utility is tested in a hierarchy of models. Idealized simulations with a barotropic and a d…