Improved locally adaptive least-squares detection of differences in images
We introduce a method for change detection under nonuniform changes of intensity using an improved least-squares method. A locally adaptive normalizing window is correlated with the two images, and a morphological postprocessing is then applied to isolate objects that have been added or removed from the scene. We use a modification of the least-squares solution to get rid of clutter caused by intensity changes that do not satisfy the model assumed for the least-squares solution.