0000000001045530
AUTHOR
Marina Guccione
Plant communities, synusiae and the arithmetic of a sustainable classification
We propose an equation to evaluate the efficiency of a classification as a function of the effort required and the population size of data collectors. The formula postulates a “classification efficiency coefficient”, which relates not only to the complexity of the object to be classified, but also to the data availability and representativeness. When applied to the classification of phytocoenoses, the equation suggests that a classification system based on vascular plants offers the best compromise between sampling effort, resolution power and data availability. We discuss the possibility of basing a vegetation classification on plot records for all macroscopic photoautotrophic organisms co…
Selective reset of a chain of interacting superconducting qubits
We propose and analyze a scheme for the selective reset of a chain of inductively coupled Josephson flux qubits initially prepared in a multipartite entangled state. The possibility of controlling at will the coupling between two prefixed qubits is exploited to drive a "generalized W state" to a factorized state with only one qubit in the excited state and all the other qubits in their own ground states.
Nonclassical correlations in superconducting circuits
A key step on the road map to solid-state quantum information processing (and to a deeper understanding of many counterintuitive aspects of quantum mechanics) is the generation and manipulation of nonclassical correlations between different quantum systems. Within this framework, we analyze the possibility of generating maximally entangled states in a system of two superconducting flux qubits, as well as the effect of their own environments on the entanglement dynamics. The analysis reported here confirms that the phenomena of sudden birth and sudden death of the entanglement do not depend on the particular measure of the entanglement adopted.
CONTROLLING THE QUANTUM DYNAMICS OF MULTIPARTITE JOSEPHSON CIRCUITS
CONTROLLING THE QUANTUM DYNAMICS OF MULTIPARTITE JOSEPHSON CIRCUITS