0000000001045895

AUTHOR

Stéphane Bourque

showing 33 related works from this author

Type-II histone deacetylases: elusive plant nuclear signal transducers

2013

Since the beginning of the 21st century, numerous studies have concluded that the plant cell nucleus is one of the cellular compartments that define the specificity of the cellular response to an external stimulus or to a specific developmental stage. To that purpose, the nucleus contains all the enzymatic machinery required to carry out a wide variety of nuclear protein post-translational modifications (PTMs), which play an important role in signal transduction pathways leading to the modulation of specific sets of genes. PTMs include protein (de)acetylation which is controlled by the antagonistic activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Regarding p…

Histone AcetyltransferasesGeneticsPhysiologyPlant ScienceBiologyCell biologyHistoneAcetylationbiology.proteinNuclear proteinSignal transductionGeneCellular compartmentProtein deacetylationPlant, Cell & Environment
researchProduct

Nitric oxide inhibits the ATPase activity of the chaperone-like AAA+ ATPase CDC48, a target for S-nitrosylation in cryptogein signalling in tobacco c…

2012

NO has important physiological functions in plants, including the adaptative response to pathogen attack. We previously demonstrated that cryptogein, an elicitor of defence reaction produced by the oomycete Phytophthora cryptogea , triggers NO synthesis in tobacco. To decipher the role of NO in tobacco cells elicited by cryptogein, in the present study we performed a proteomic approach in order to identify proteins undergoing S-nitrosylation. We provided evidence that cryptogein induced the S-nitrosylation of several proteins and identified 11 candidates, including CDC48 (cell division cycle 48), a member of the AAA+ ATPase (ATPase associated with various cellular activities) family. In vit…

Models Molecular0106 biological sciencesProtein Conformation[SDV]Life Sciences [q-bio]Nicotiana tabacumATPaseMolecular Sequence DataCell Cycle ProteinsNitric Oxide01 natural sciencesBiochemistrycryptogeinFungal Proteins03 medical and health sciencesValosin Containing ProteinTobaccoAmino Acid Sequencenitric oxide (no)Molecular BiologyPlant Proteins030304 developmental biologyAdenosine Triphosphatases0303 health sciencesbiologyWalker motifsCell BiologyS-Nitrosylationcell division cycle 48 (cdc48)Biotic stressbiology.organism_classificationAAA proteinsProtein Structure TertiaryElicitorBiochemistryChaperone (protein)[SDE]Environmental Sciencesbiology.proteins-nitrosylationplant defence responses010606 plant biology & botanyBiochemical Journal
researchProduct

Nuclear calcium signaling: An emerging topic in plants

2011

International audience; The calcium ion is probably one of the most studied second messenger both in plant and animal fields. A large number of reviews have browsed the diversity of cytosolic calcium signatures and evaluated their pleiotropic roles in plant and animal cells. In the recent years, an increasing number of reviews has focused on nuclear calcium, especially on the possible roles of nuclear calcium concentration variations on nuclear activities. Experiments initially performed on animal cells gave conflicting results that brought about a controversy about the ability of the nucleus to generate its own calcium signals and to regulate its calcium level. But in plant cells, several …

biochemistry and molecular biology0106 biological sciences[SDV]Life Sciences [q-bio]aequorinchemistry.chemical_elementBiologyCalciumcalcium signaling01 natural sciencesBiochemistry03 medical and health sciencesCalcium-binding proteinTobaccomedicineHomeostasisPlant Proteins030304 developmental biologyCalcium signalingCell NucleusCalcium metabolism0303 health sciencescalcium homeostasisCalcium-Binding Proteinsnuclear calciumGeneral MedicineCell nucleusmedicine.anatomical_structureBiochemistrychemistry[SDE]Environmental SciencesSecond messenger systemNuclear calciumCalciumNucleusNeuroscience010606 plant biology & botanyBiochimie
researchProduct

Cross-Talk between ROS and Calcium in Regulation of Nuclear Activities

2010

International audience; Calcium and Reactive Oxygen Species (ROS) are acknowledged as crucial second messengers involved in the response to various biotic and abiotic stresses. However, it is still not clear how these two compounds can play a role in different signaling pathways leading the plant to a variety of processes such as root development or defense against pathogens. Recently, it has been shown that the concept of calcium and ROS signatures, initially discovered in the cytoplasm, can also be extended to the nucleus of plant cells. In addition, it has been clearly proved that both ROS and calcium signals are intimately interconnected. How this cross-talk can finally modulate the tra…

0106 biological sciences[SDV]Life Sciences [q-bio]chemistry.chemical_elementSignallingPlant ScienceBiologyCalciumModels Biological01 natural sciencesNucleus03 medical and health sciencesNuclear proteinCrosstalkMolecular Biology030304 developmental biologyCell NucleusCalcium metabolismchemistry.chemical_classification0303 health sciencesReactive oxygen speciesfungifood and beveragesROSCell biologyMetabolic pathwaychemistryCytoplasmSecond messenger systemCalciumSignal transductionReactive Oxygen SpeciesSignal Transduction010606 plant biology & botanyMolecular Plant
researchProduct

Proteinaceous and oligosaccharidic elicitors induce different calcium signatures in the nucleus of tobacco cells.

2005

We previously reported elevated cytosolic calcium levels in tobacco cells in response to elicitors [D. Lecourieux, C. Mazars, N. Pauly, R. Ranjeva, A. Pugin, Analysis and effects of cytosolic free calcium elevations in response to elicitors in Nicotiana plumbaginifolia cells, Plant Cell 14 (2002) 2627-2641]. These data suggested that in response to elicitors, Ca2+, as a second messenger, was involved in both systemic acquired resistance (RSA) and/or hypersensitive response (HR) depending on calcium signature. Here, we used transformed tobacco cells with apoaequorin expressed in the nucleus to monitor changes in free nuclear calcium concentrations ([Ca2+](nuc)) in response to elicitors. Two …

Hypersensitive responsePhysiologyAequorinMutant Chimeric Proteinschemistry.chemical_elementOligosaccharidesCalciumTobaccoCalcium SignalingPhosphorylationMolecular BiologyCells CulturedCalcium signalingPlant ProteinsCell Nucleusbiologyfood and beveragesCell BiologyElicitorCytosolchemistryBiochemistrySecond messenger systemGene Targetingbiology.proteinSystemic acquired resistanceCell calcium
researchProduct

Type-2 histone deacetylases as new regulators of elicitor-induced cell death in plants

2011

 voir Addenda, notes additionnelles complétant l'article : "Dahan, J., Hammoudi, V., Wendehenne, D., Bourque, S. (2011). Type 2 histone deacetylases play a major role in the control of elicitor-induced cell death in tobacco. Plant signaling & behavior, 6 (11), 1865-1867. DOI : 10.4161/psb.6.11.17848".; International audience; Plant resistance to pathogen attack is often associated with a localized programmed cell death called hypersensitive response (HR). How this cell death is controlled remains largely unknown. Upon treatment with cryptogein, an elicitor of tobacco defence and cell death, we identified NtHD2a and NtHD2b, two redundant isoforms of type-2 nuclear histone deacetylases (HDACs…

0106 biological sciencesHypersensitive responseProgrammed cell deathPhysiologyplant defenceNicotiana tabacum[SDV]Life Sciences [q-bio]Molecular Sequence DataHistone Deacetylase 2Plant Science01 natural sciencesMass SpectrometrycryptogeinFungal Proteins03 medical and health sciences[ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/AgronomyTobaccoAmino Acid SequencePhosphorylationNuclear proteinPhylogeny030304 developmental biology0303 health sciencesbiologyNicotiana tabacumAlgal ProteinsNuclear Proteinsfood and beveragesAcetylationbiology.organism_classificationElicitorCell biologyHistonecell deathhypersensitive response (HR)Acetylationhistone deacetylasebiology.proteinHistone deacetylasePeptidesSequence AlignmentChromatography Liquid010606 plant biology & botanynuclear signalling
researchProduct

Post-Translational Modifications of Nuclear Proteins in the Response of Plant Cells to Abiotic Stresses

2011

For a long time, in plant cells as in animal cells, the nucleus was only considered as the organelle in which fundamental mechanisms such as replication and transcription occurred. While strong efforts were deployed in order to identify important families of transcription factors such as MYB, WRKY or TGA families (Dubos et al., 2010; Rushton et al., 2010), a few attention was devoted to our lack of knowledge about their regulation in regard to the physiological conditions of the plant cells. Whereas the major importance of posttranslational modification of proteins is well established for several decades regarding cytosolic proteins, the last years have been characterized by the discovery t…

HistonebiologyAbiotic stressbiology.proteinMYBSignal transductionNuclear proteinTranscription factorWRKY protein domainCell biologyChromatin
researchProduct

Plasma membrane sterol complexation, generated by filipin, triggers signaling responses in tobacco cells

2010

International audience; The effects of changes in plasma membrane (PM) sterol lateral organization and availability on the control of signaling pathways have been reported in various animal systems, but rarely assessed in plant cells. In the present study, the pentaene macrolide antibiotic filipin III, commonly used in animal systems as a sterol sequestrating agent, was applied to tobacco cells. We show that filipin can be used at a non-lethal concentration that still allows an homogeneous labeling of the plasma membrane and the formation of filipin-sterol complexes at the ultrastructural level. This filipin concentration triggers a rapid and transient NADPH oxidase-dependent production of …

0106 biological sciencesMembrane Fluidity[SDV]Life Sciences [q-bio]CellBiophysicsPLANTEBiology01 natural sciencesFilipinBiochemistry03 medical and health scienceschemistry.chemical_compoundTobaccomedicinepolycyclic compoundsMEMBRANE PLASMIQUEFilipinPhosphorylation030304 developmental biologySterolchemistry.chemical_classification0303 health sciencesReactive oxygen speciesCell DeathCell MembranePhytosterolsPlantCell BiologyPlant cellSterolCell biologymedicine.anatomical_structurechemistrySignalizationPotassiumSIGNALISATIONPhosphorylationlipids (amino acids peptides and proteins)sense organsSignal transductionReactive Oxygen SpeciesLaurdanSignal Transduction010606 plant biology & botanyPlasma membraneBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

Evolutionary diversification of type-2 HDAC structure, function and regulation in Nicotiana tabacum

2018

Ministère de l'Education Nationale et de la Recherche ; Conseil Régional de Bourgogne (PARI AGRALE8) ; Association pour la Recherche sur les Nicotianacées ; Conseil Régional de Bourgogne; International audience; Type-2 HDACs (HD2s) are plant-specific histone deacetylases that play diverse roles during development and in responses to biotic and abiotic stresses. In this study we characterized the six tobacco genes encoding HD2s that mainly differ by the presence or the absence of a typical zinc finger in their C-terminal part. Of particular interest, these HD2 genes exhibit a highly conserved intron/exon structure. We then further investigated the phylogenetic relationships among the HD2 gen…

0106 biological sciences0301 basic medicineNicotiana tabacumPlant Science01 natural sciencesEvolution MolecularType-2 HDAC (HD2)03 medical and health sciencesPhylogeneticsZinc fingerTobaccoGeneticsArabidopsis thalianaGene family[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyAmino Acid SequenceGenePhylogenySolanaceaePlant ProteinsZinc fingerGeneticsbiologyModels GeneticIntronZinc FingersGeneral MedicineSalt Tolerancebiology.organism_classificationSalt stress responseComplementation030104 developmental biologyHistone DeACetylase (HDAC)Agronomy and Crop ScienceSequence Alignment010606 plant biology & botany
researchProduct

Le monoxyde d’azote

2013

Le monoxyde d’azote (NO) est un mediateur physiologique associe a divers processus chez les animaux, dont l’immunite. Des travaux conduits recemment montrent que les plantes, confrontees a l’attaque d’agents pathogenes, produisent egalement du NO. Le NO est donc un acteur des voies de signalisation cellulaire activees en reponse a la reconnaissance par les plantes d’agresseurs exterieurs. L’etude des molecules cibles du NO et, plus particulierement, la caracterisation de proteines S-nitrosylees, a permis d’avoir un premier apercu des mecanismes fins inherents a ses fonctions. Le NO serait ainsi implique dans l’activation ainsi que dans la desensibilisation des voies de signalisation mobilis…

0106 biological sciences0303 health sciences03 medical and health sciencesPhilosophyGeneral Medicine01 natural sciencesMolecular biologyGeneral Biochemistry Genetics and Molecular Biology030304 developmental biology010606 plant biology & botanymédecine/sciences
researchProduct

Type 2 histone deacetylases play a major role in the control of elicitor-induced cell death in tobacco

2011

article addendum : Bourque S, Dutartre A, Hammoudi V, Blanc S, Dahan J, Jeandroz S, Pichereaux C, Rossignol M, Wendehenne D., 2011. Type-2 histone deacetylases as new regulators of elicitorinduced cell death in plants. New Phytologist, 192 (1), 127–139. DOI: 10.1111/j.1469-8137.2011.03788.x; International audience; The cell death which characterizes the onset of the Hypersensitive Response (HR) is a very important weapon evolved by plants to block pathogen development. By the use of numerous plant/avirulent pathogen or plant/elicitor models, we have now obtained detailed signalling pathways allowing, after pathogen or elicitor perception, the control of the expression of specific sets of ge…

0106 biological sciencesHypersensitive responseProgrammed cell death[SDV]Life Sciences [q-bio]Histone Deacetylase 2Plant ScienceModels Biological01 natural sciences03 medical and health sciencesGene Expression Regulation PlantHDACPlant CellsTobaccoNuclear proteinPlant Proteinsacetylation030304 developmental biology0303 health scienceselicitorbiologyphosphorylationHistone deacetylase 2nucleusfood and beveragesprotein kinaseAddendumElicitorCell biologycell deathHistonebiology.proteinHistone deacetylaseSignal transductionSignal Transduction010606 plant biology & botanyPlant Signaling & Behavior
researchProduct

Calcium homeostasis in plant cell nuclei

2009

International audience; In plant cells, calcium-based signaling pathways are involved in a large array of biological processes, including cell division, polarity, growth, development and adaptation to changing biotic and abiotic environmental conditions. Free calcium changes are known to proceed in a nonstereotypical manner and produce a specific signature, which mirrors the nature, strength and frequency of a stimulus. The temporal aspects of calcium signatures are well documented, but their vectorial aspects also have a profound influence on biological output. Here, we will focus on the regulation of calcium homeostasis in the nucleus. We will discuss data and present hypotheses suggestin…

0106 biological sciencesCELL NUCLEUSHOMEOSTASISAUTONOMYCell divisionPhysiologyAequorinchemistry.chemical_elementPlant ScienceCalcium01 natural sciencesCALCIUM03 medical and health sciencesCytosolPlant CellsOrganellemedicineCalcium SignalingCELLULE VEGETALE030304 developmental biologyCalcium metabolism0303 health sciencesbiologyAEQUORINEAEQUORINCell biology[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacymedicine.anatomical_structurechemistryHOMEOSTASIEbiology.proteinSignal transductionNucleusHomeostasis010606 plant biology & botanySignal Transduction
researchProduct

Interplays between nitric oxide and reactive oxygen species in cryptogein signalling

2014

The cellular messenger nitric oxide (NO) has many functions in plants. In this study, we investigated its interplays with Reactive Oxygen Species (ROS) in the defense responses triggered by the elicitin cryptogein produced by the oomycete Phytophthora cryptogea. The production of NO induced by cryptogein in tobacco cell suspensions was partly regulated through a ROS-dependent pathway involving the NADPH oxidase NtRBOHD. In turn, NO down-regulated the level of H2O2 derived from NtRBOHD activity. Both NO and ROS synthesis appeared to be under the control of two redundant isoforms of histone deacetylases of type 2 acting as negative regulators of cell death. Occurrence of an interplay between …

chemistry.chemical_classificationProgrammed cell deathReactive oxygen speciesNADPH oxidasebiologyPhysiologySuperoxideElicitinPlant ScienceCell biologyNitric oxidechemistry.chemical_compoundBiochemistrychemistrybiology.proteinProtein kinase APeroxynitritePlant, Cell & Environment
researchProduct

Nuclear protein kinases: still enigmatic components in plant cell signalling

2010

International audience; Plants constantly face changing conditions in their environment. Unravelling the transduction mechanisms from signal perception at the plasma membrane level down to gene expression in the nucleus is a fascinating challenge. Protein phosphorylation, catalysed by protein kinases, is one of the major posttranslational modifications involved in the specificity, kinetic(s) and intensity of a signal transduction pathway. Although commonly assumed, the involvement of nuclear protein kinases in signal transduction is often poorly characterized. In particular, both their regulation and mode of action remain to be elucidated and may lead to the unveiling of new original mechan…

0106 biological sciencesPhysiologyp38 mitogen-activated protein kinasesPROTEIN KINASENUCLEAR TRANSLOCATIONPlant ScienceBiology01 natural sciencesSecond Messenger Systems03 medical and health sciencesNCK1Protein phosphorylationNuclear proteinNUCLEUS030304 developmental biologyPROTEIN (DE)PHOSPHORYLATION0303 health sciencesGRB10SIGNAL TRANSDUCTIONNuclear ProteinsAutophagy-related protein 13PlantsCell biology[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyBiochemistryCDC37Mitogen-activated protein kinasebiology.proteinProtein Kinases010606 plant biology & botany
researchProduct

NO Signalling in Plant Immunity

2016

The importance of nitric oxide (NO) in innate and adaptive immunity in mammals is well recognised. NO exerts antimicrobial properties against invaders but also displays immunoregulatory functions in which S-nitrosylation represents a signalling process of major importance. Over the last two decades, a growing body of evidence suggests that NO is also a major component of plant immunity. Our understanding of its role in plant defence has been enriched by the identification and functional analysis of S-nitrosylated proteins. The recent identification of new S-nitrosylated proteins including the chaperone-like enzyme cell division cycle 48 (CDC48), histone deacetylases (HDACs) and calmodulin (…

0106 biological sciences0301 basic medicinebiologyCalmodulinPlant ImmunityS-NitrosylationAcquired immune system01 natural sciencesCell biology03 medical and health sciences030104 developmental biologyHistoneSignallingbiology.proteinEpigenetics010606 plant biology & botanyCalcium signaling
researchProduct

The Elicitor Cryptogein Blocks Glucose Transport in Tobacco Cells

2002

Abstract Cryptogein is a 10-kD protein secreted by the oomycetePhytophthora cryptogea that induces a hypersensitive response on tobacco (Nicotiana tabacum var. Xanthi) plants and a systemic acquired resistance against various pathogens. The mode of action of this elicitor has been studied using tobacco cell suspensions. Our previous data indicated that within minutes, cryptogein signaling involves various events including changes in ion fluxes, protein phosphorylation, sugar metabolism, and, eventually, cell death. These results suggested that transport of sugars could be affected and, thus, involved in the complex relationships between plant and microorganisms via elicitors. This led us to…

Hypersensitive responsebiologyPhysiologyNicotiana tabacumGlucose transporterfood and beveragesDepolarizationPlant ScienceMitochondrionbiology.organism_classificationElicitorBiochemistryGeneticsProtein phosphorylationSystemic acquired resistancePlant Physiology
researchProduct

Nitric oxide signalling in plants: interplays with Ca2+ and protein kinase

2008

International audience; Much attention has been paid to nitric oxide (NO)research since its discovery as a physiological mediator of plant defence responses. In recent years, newer roles have been attributed to NO, ranging from root development to stomatal closure. The molecular mechanisms underlying NO action in plants are just begun to emerge. The currently available data illustrate that NO can directly influence the activity of target proteins through nitrosylation and has the capacity to act as a Ca2+-mobilizing intracellular messenger. The interplay between NO and Ca2+ has important functional implications, expanding and enriching the possibilities for modulating transduction processes…

0106 biological sciencesSIGNALLINGPhysiologyPlant ScienceBiology01 natural sciencesNitric oxide03 medical and health sciencesTransduction (genetics)chemistry.chemical_compoundSNF-RELATED PROTEIN KINASE 2Mediator030304 developmental biology0303 health sciencesADP-RIBOSE CYCLIQUEPROTEIN KINASESKinaseCALCIUM 2+NitrosylationPlants[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/BotanicsNitric oxide metabolismCell biologySignallingBiochemistrychemistryCalciumIntracellularNITRIC OXIDE010606 plant biology & botanySignal Transduction
researchProduct

Post-translational Modifications in Plant Nuclear Signaling: Novel Insights Into Responses to Environmental Changes

2019

Just imagine a Plant Science professor in front of a classroom full of interested and attentive students. Imagine what their answers to this intriguing question would be: “What are, according to you, the functions ensured by the plant cell nucleus?” It would be very surprising if some of them would answer cell signaling in response to biotic and abiotic stresses or developmental processes. Most of them would probably answer according to a classical point of view: DNA replication or gene expression. Hence it is still admitted in recent publications (see for instance Fedorenko et al., 2010) that molecules smaller than 40 kDa can diffuse freely across the nuclear envelope pores. However, Pauly…

[SDV]Life Sciences [q-bio]SUMO proteinPlant Sciencelcsh:Plant culture03 medical and health sciences0404 agricultural biotechnologynucleus;post-translation modification (PTM);phosphorylation;acetylation;SUMOylationpost-translation modification (PTM)medicine[SDV.BV]Life Sciences [q-bio]/Vegetal Biologylcsh:SB1-1110030304 developmental biologyacetylation0303 health sciencesChemistryphosphorylationnucleus04 agricultural and veterinary sciences040401 food scienceSUMOylationCell biologymedicine.anatomical_structureEditorialAcetylation[SDE]Environmental SciencesPosttranslational modificationPhosphorylationAcetylation ; Nucleus ; Phosphorylation ; Post-translation Modification (ptm) ; SumoylationNucleusFrontiers in Plant Science
researchProduct

Cryptogein, a fungal elicitor, remodels the phenylpropanoid metabolism of tobacco cell suspension cultures in a calcium-dependent manner

2010

Plant cells use calcium-based signalling pathways to transduce biotic and/or abiotic stimuli into adaptive responses. However, little is known about the coupling between calcium signalling, transcriptional regulation and the downstream biochemical processes. To understand these relationships better, we challenged tobacco BY-2 cells with cryptogein and evaluated how calcium transients (monitored through the calcium sensor aequorin) impact (1) transcript levels of phenylpropanoid genes (assessed by RT-qPCR); and (2) derived-phenolic compounds (analysed by mass spectrometry). Most genes of the phenylpropanoid pathway were up-regulated by cryptogein and cell wall-bound phenolic compounds accumu…

0106 biological sciencesCalcium metabolism0303 health sciencesFungal proteinbiologyPhenylpropanoidPhysiologyAequorinchemistry.chemical_elementPlant ScienceCalcium01 natural sciencesElicitor03 medical and health scienceschemistryBiochemistryTranscriptional regulationbiology.protein030304 developmental biology010606 plant biology & botanyCalcium signalingPlant, Cell & Environment
researchProduct

Protein S-nitrosylation: What's going on in plants?

2012

International audience; Nitric oxide (NO) is now recognized as a key regulator of plant physiological processes. Understanding the mechanisms by which NO exerts its biological functions has been the subject of extensive research. Several components of the signaling pathways relaying NO effects in plants, including second messengers, protein kinases, phytohormones, and target genes, have been characterized. In addition, there is now compelling experimental evidence that NO partly operates through posttranslational modification of proteins, notably via S-nitrosylation and tyrosine nitration. Recently, proteome-wide scale analyses led to the identification of numerous protein candidates for S-…

ProteomeKinaseIn silicoRegulatorPlant ImmunityNitric oxideComputational biologyS-NitrosylationPlantBiologyPlantsPosttranslational protein modificationBiochemistryS-NitrosylationPlant immunityBiochemistry[ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/AgronomyPhysiology (medical)Second messenger system[SDV.BV]Life Sciences [q-bio]/Vegetal BiologySignal transductionGeneProtein Processing Post-TranslationalPlant Proteins
researchProduct

Comparison of the effects of cryptogein and oligogalacturonides on tabacco cells and evidence of different forms of desensitization induced by these …

1998

Abstract The effects of cryptogein and oligogalacturonides (OGs) were compared on tobacco cells by measuring calcium influx and calcium-dependent responses including extracellular alkalinization and H 2 O 2 production. The main difference is the higher calcium influx and the sustained H 2 O 2 production induced by cryptogein compared to OGs. Amplitude and duration of calcium signalling triggered by cryptogein or OGs may explain the necrotic effect of cryptogein, and the absence of necrosis in tobacco plants treated with OGs. We used induction of alkalinization and H 2 O 2 production to investigate cryptogein effects after a first treatment with cryptogein or OGs, and reciprocally. Results s…

0106 biological sciencesNicotiana tabacumchemistry.chemical_elementStimulationPlant ScienceCalciumBiology01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciences[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsBotanyGeneticsExtracellularComputingMilieux_MISCELLANEOUS030304 developmental biologyCalcium signaling0303 health sciencesGeneral Medicinebiology.organism_classificationElicitorCell biologyRespiratory burstchemistrySignal transductionAgronomy and Crop Science010606 plant biology & botany
researchProduct

There's More to the Picture Than Meets the Eye: Nitric Oxide Cross Talk with Ca2+ Signaling

2013

Abstract Calcium and nitric oxide (NO) are two important biological messengers. Increasing evidence indicates that Ca2+ and NO work together in mediating responses to pathogenic microorganisms and microbe-associated molecular patterns. Ca2+ fluxes were recognized to account for NO production, whereas evidence gathered from a number of studies highlights that NO is one of the key messengers mediating Ca2+ signaling. Here, we present a concise description of the current understanding of the molecular mechanisms underlying the cross talk between Ca2+ and NO in plant cells exposed to biotic stress. Particular attention will be given to the involvement of cyclic nucleotide-gated ion channels and…

0106 biological sciencescalmodulinCell signalingCalmodulinPhysiology[SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/AgronomyNanotechnologyPlant ScienceBiology01 natural sciencesNitric oxideTranscriptome03 medical and health scienceschemistry.chemical_compound[ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/Agronomyplant defenseGeneticsPlant defense against herbivoryIon channel030304 developmental biology0303 health sciencescell signallingBiotic stressCell biologychemistryprotein S-nitrosylationgene expressionbiology.proteinplant immunitySignal transduction010606 plant biology & botanyPlant Physiology
researchProduct

Calcium signaling in plant cell organelles delimited by a double membrane.

2006

AbstractIncreases in the concentration of free calcium in the cytosol are one of the general events that relay an external stimulus to the internal cellular machinery and allow eukaryotic organisms, including plants, to mount a specific biological response. Different lines of evidence have shown that other intracellular organelles contribute to the regulation of free calcium homeostasis in the cytosol. The vacuoles, the endoplasmic reticulum and the cell wall constitute storage compartments for mobilizable calcium. In contrast, the role of organelles surrounded by a double membrane (e.g. mitochondria, chloroplasts and nuclei) is more complex. Here, we review experimental data showing that t…

OrganellesEndoplasmic reticulumCell Membranechemistry.chemical_elementCell BiologyCell compartmentationCalciumBiologyPlantsCalcium in biologyDynamics of cytosolic and organelle calciumCell biologyCytosolCytosolchemistryCytoplasmOrganellePlant cell organizationCalciumCalcium SignalingMolecular BiologyCellular compartmentCalcium signalingPlant cell signalingBiochimica et biophysica acta
researchProduct

Signalisation calcique cytosolique et nucléaire et réponses des plantes aux stimulus biotiques et abiotiques

2006

General MedicineBiologyGeneral Biochemistry Genetics and Molecular Biologymédecine/sciences
researchProduct

Comparison of binding properties and early biological effects of elicitins in tobacco cells

1998

Abstract Elicitins are a family of small proteins secreted by Phytophthora species that have a high degree of homology and elicit defense reactions in tobacco (Nicotiana tabacum). They display acidic or basic characteristics, the acidic elicitins being less efficient in inducing plant necrosis. In this study we compared the binding properties of four elicitins (two basic and two acidic) and early-induced signal transduction events (Ca2+ influx, extracellular medium alkalinization, and active oxygen species production). The affinity for tobacco plasma membrane-binding sites and the number of binding sites were similar for all four elicitins. Furthermore, elicitins compete with one another fo…

0106 biological sciencesPhysiologyNicotiana tabacumPlant Science01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciencesCell surface receptor[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsGeneticsExtracellularBinding siteComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesbiologyBinding proteinElicitinTECHNIQUE DES TRACEURSbiology.organism_classificationElicitorBiochemistryCULTURE DE CELLULESignal transduction010606 plant biology & botanyResearch Article
researchProduct

Early signaling events induced by elicitors of plant defenses

2006

International audience; Plant pathogen attacks are perceived through pathogenissued compounds or plant-derived molecules that elicit defense reactions. Despite the large variety of elicitors, general schemes for cellular elicitor signaling leading to plant resistance can be drawn. In this article, we review early signaling events that happen after elicitor perception, including reversible protein phosphorylations, changes in the activities of plasma membrane proteins, variations in free calcium concentrations in cytosol and nucleus, and production of nitric oxide and active oxygen species. These events occur within the first minutes to a few hours after elicitor perception. One specific eli…

0106 biological sciencesprotéine kinasePhysiologyNicotiana tabacum[SDV]Life Sciences [q-bio]Biology01 natural sciences03 medical and health sciencesPlant defense against herbivoryProtein kinase A030304 developmental biologyPlant DiseasesPlant Proteinsplant defense responsesprotein kinases0303 health sciencesplant defense responses; ion fluxes; protein kinasesfungifood and beveragesprotein kinaseGeneral Medicineion fluxes;protein kinasePlantsbiology.organism_classificationElicitorCytosolMembrane proteinBiochemistryPhosphorylationionSignal transductionAgronomy and Crop Scienceion fluxes010606 plant biology & botanySignal Transduction
researchProduct

Involvement of putative glutamate receptors in plant defence signaling and NO production

2011

International audience; Ionotropic glutamate receptors (iGluRs) are non-selective cation channels permeable to calcium, present in animals and plants. In mammals, glutamate is a well-known neurotransmitter and recently has been recognized as an immunomodulator. As animals and plants share common mechanisms that govern innate immunity with calcium playing a key role in plant defence activation, we have checked the involvement of putative iGluRs in plant defence signaling. Using tobacco cells, we first provide evidence supporting the activity of iGluRs as calcium channels and their involvement in NO production as reported in animals. Thereafter, iGluRs were shown to be activated in response t…

0106 biological sciencesHypersensitive responsebiochemistry and molecular biologyplant defenceglutamate receptorCell Culture TechniquesGlutamic AcidBiologycalcium signaling01 natural sciencesBiochemistrytobaccoFungal Proteins03 medical and health sciencesnitric oxideelicitorsExcitatory Amino Acid Agonists[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biologyrésistance végétalePlant Proteins030304 developmental biologyCalcium signaling0303 health sciencesVoltage-dependent calcium channelAlgal ProteinsGlutamate receptorGeneral MedicineGlutamic acidImmunity InnateElicitortabacReceptors GlutamateBiochemistryMetabotropic glutamate receptorNMDA receptorCalciumExcitatory Amino Acid Antagonists010606 plant biology & botany
researchProduct

NO signaling in plant immunity: A tale of messengers

2015

International audience; Nitric oxide (NO) is a free radical gas involved in a myriad of plant physiological processes including immune responses. How NO mediates its biological effects in plant facing microbial pathogen attack is an unresolved question. Insights into the molecular mechanisms by which it propagates signals reveal the contribution of this simple gas in complex signaling pathways shared with reactive oxygen species (ROS) and the second messenger Ca2+. Understanding of the subtle cross-talks operating between these signals was greatly improved by the recent identification and the functional analysis of proteins regulated through S-nitrosylation, a major NO-dependent post-transl…

Cell deathCalmodulinPlant ImmunityPlant ScienceHorticultureBiologyBiochemistryNitric oxidechemistry.chemical_compoundImmune systemCalmodulin[ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/Agronomy[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyPlant ImmunityMolecular Biologychemistry.chemical_classificationReactive oxygen speciesMechanism (biology)Nitric oxideGeneral MedicineSignalingCell biologychemistrySecond messenger systembiology.proteinCalciumSignal transductionReactive oxygen speciesSignal Transduction
researchProduct

Activation of a nuclear-localized SIPK in tobacco cells challenged by cryptogein, an elicitor of plant defence reactions.

2009

When a plant cell is challenged by a well-defined stimulus, complex signal transduction pathways are activated to promote the modulation of specific sets of genes and eventually to develop adaptive responses. In this context, protein phosphorylation plays a fundamental role through the activation of multiple protein kinase families. Although the involvement of protein kinases at the plasma membrane and cytosolic levels are now well-documented, their nuclear counterparts are still poorly investigated. In the field of plant defence reactions, no known study has yet reported the activation of a nuclear protein kinase and/or its nuclear activity in plant cells, although some protein kinases, e.…

0106 biological sciencesMAPK/ERK pathwayMolecular Sequence DataActive Transport Cell NucleusBiology01 natural sciencesBiochemistryMAP2K703 medical and health sciencesCytosolTobaccoASK1Protein phosphorylation[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyAmino Acid SequenceNuclear proteinProtein kinase AMolecular BiologyConserved Sequence030304 developmental biologyPlant ProteinsCell Nucleus0303 health sciencesKinasePlant ExtractsAlgal ProteinsLife SciencesCell BiologyCell biologyEnzyme ActivationBiochemistrySignal transductionMitogen-Activated Protein KinasesSequence Alignment010606 plant biology & botanySignal TransductionThe Biochemical journal
researchProduct

NO signaling in cryptogein-induced immune responses in tobacco

2014

[SDV] Life Sciences [q-bio][SDE] Environmental SciencesNo signaling[SDV]Life Sciences [q-bio][SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal BiologyS-nitrosylationimmune responsecryptogeinpathogen
researchProduct

Emerging functions of nitric oxide in plant immunity

2016

SPEIPMUBAgrosupCNRS; The importance of nitric oxide (NO) in innate and adaptive immunity in mammals is well recognised. NO exerts antimicrobial properties against invaders but also displays immunoregulatory functions in which S-nitrosylation represents a signalling process of major importance. Over the last two decades, a growing body of evidence suggests that NO is also a major component of plant immunity. Our understanding of its role in plant defence has been enriched by the identification and functional analysis of S-nitrosylated proteins. The recent identification of new S-nitrosylated proteins including the chaperone-like enzyme cell division cycle 48 (CDC48), histone deacetylases (HD…

Cdc48nitric oxide;plant immunity;S-nitrosylation;histone deacetylases;Cdc48;calmoduline[ SDV ] Life Sciences [q-bio]nitric oxide[SDV]Life Sciences [q-bio]calmodulineplant immunityS-nitrosylationhistone deacetylases
researchProduct

Nuclear protein acetylation in the control of plant defense responses: role of type-2 histone deacetylases

2015

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencesnuclear protein[SDV]Life Sciences [q-bio][SDE]Environmental Sciencestype-2 histone deacetylase[SDV.BV]Life Sciences [q-bio]/Vegetal Biologyplant[SDV.BV] Life Sciences [q-bio]/Vegetal Biologydefense responseacetylation
researchProduct

The role of NtRBOHD in regulation of response to cryptogein in tobacco cells

2014

International audience

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencesreactive oxygen speciesnitric oxide[SDV]Life Sciences [q-bio][SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologyplant immunitysignalingComputingMilieux_MISCELLANEOUSperoxynitritecryptogein
researchProduct