0000000001046354
AUTHOR
Zsolt Ugray
A Multistart Scatter Search Heuristic for Smooth NLP and MINLP Problems
The algorithm described here, called OptQuest/NLP or OQNLP, is a heuristic designed to find global optima for pure and mixed integer nonlinear problems with many constraints and variables, where all problem functions are differentiable with respect to the continuous variables. It uses OptQuest, a commercial implementation of scatter search developed by OptTek Systems, Inc., to provide starting points for a gradient-based local NLP solver. This solver seeks a local solution from a subset of these points, holding discrete variables fixed. The procedure is motivated by our desire to combine the superior accuracy and feasibility-seeking behavior of gradient-based local NLP solvers with the glob…
Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization
The algorithm described here, called OptQuest/NLP or OQNLP, is a heuristic designed to find global optima for pure and mixed integer nonlinear problems with many constraints and variables, where all problem functions are differentiable with respect to the continuous variables. It uses OptQuest, a commercial implementation of scatter search developed by OptTek Systems, Inc., to provide starting points for any gradient-based local solver for nonlinear programming (NLP) problems. This solver seeks a local solution from a subset of these points, holding discrete variables fixed. The procedure is motivated by our desire to combine the superior accuracy and feasibility-seeking behavior of gradie…