0000000001046753

AUTHOR

U. Forsberg

showing 29 related works from this author

Spectroscopic Tools Applied to Flerovium Decay Chains

2020

Abstract An upgraded TASISpec setup, with the addition of a veto DSSD and the new Compex detector-germanium array, has been employed with the gas-filled recoil separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, to study flerovium (element 114) decay chains. The detector upgrades along with development of new analytical techniques have improved the sensitivity of the TASISpec setup for measuring α-photon coincidences. These improvements have been assessed with test reactions. The reaction 48Ca+206,207Pb was used for verification of experimental parameters such as transmission to implantation DSSD and target-segment to α-decay correlations. The reaction 48Ca+ nat …

Historyalpha decayspektroskopiatutkimuslaitteetchemistry.chemical_element01 natural sciencesRecoil separatorEducationNuclear physics0103 physical sciencesSubatomic Physicsddc:530Sensitivity (control systems)010306 general physicsPhysicsnuclear spectroscopy010308 nuclear & particles physicsDetector3. Good healthComputer Science ApplicationsFleroviumsuperheavy elementschemistryNuclear spectroscopyAlpha decayDecay chainDeconvolutionydinfysiikka
researchProduct

β decay of Cd127 and excited states in In127

2019

A dedicated spectroscopic study of the β decay of 127Cd was conducted at the IGISOL facility at the University of Jyvaskyla. Following high-resolution mass separation in a Penning trap, β-γ-γ coincidences were used to considerably extend the decay scheme of 127In. The β-decaying 3/2+ and 11/2- states in 127Cd have been identified with the 127Cd ground state and the 283-keV isomer. Their respective half-lives have been measured to 0.45(+12-8)s and 0.36(4) s. The experimentally observed β feeding to excited states of 127In and the decay scheme of 127In are discussed in conjunction with large-scale shell-model calculations.

PhysicsDecay scheme010308 nuclear & particles physicsNuclear shell modelPenning trap01 natural sciencesBeta decayMass separationExcited state0103 physical sciencesGamma spectroscopyAtomic physics010306 general physicsGround statePhysical Review C
researchProduct

Alpha-Photon Coincidence Spectroscopy Along Element 115 Decay Chains

2014

Produced in the reaction 48Ca+243Am, thirty correlated α-decay chains were observed in an experiment conducted at the GSI Helmholzzentrum fur Schwerionenforschung, Darmstadt, Germany. The decay chains are basically consistent with previous findings and are considered to originate from isotopes of element 115 with mass numbers 287, 288, and 289. A set-up aiming specifically for high-resolution charged particle and photon coincidence spectroscopy was placed behind the gas-filled separator TASCA. For the first time, γ rays as well as X-ray candidates were observed in prompt coincidence with the α-decay chains of element 115.

Physicselement 115PhotonIsotopealpha decayGeneral Physics and Astronomy7. Clean energyNuclear & Particles PhysicsCoincidenceCharged particleMathematical SciencesNuclear physicssuperheavy elementsgamma-ray spectroscopySubatomic PhysicsPhysical SciencesGamma spectroscopyddc:530Alpha decayDecay chainAtomic physicsSpectroscopy
researchProduct

Recoil-α-fission and recoil-α–α-fission events observed in the reaction 48Ca + 243Am

2016

Products of the fusion-evaporation reaction 48Ca + 243Am were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. Amongst the detected thirty correlated α-decay chains associated with the production of element Z=115, two recoil-α-fission and five recoil-α-α-fission events were observed. The latter five chains are similar to four such events reported from experiments performed at the Dubna gas-filled separator, and three such events reported from an experiment at the Berkeley gas-filled separator. The four chains observed at the Dubna gas-filled separator were assigned to start from the 2n-evaporation ch…

Nuclear and High Energy Physicsalpha decayFissionSuperheavy elementschemistry.chemical_elementSuperheavy Elementsnucl-exAtomic01 natural sciences7. Clean energyNuclear physicsParticle and Plasma PhysicsRecoil0103 physical sciencesNuclearElement 115α decayNuclear Experiment010306 general physicsUnunpentiumSpontaneous fissionPhysicsQuantum PhysicsUup010308 nuclear & particles physicsSpontaneous fissionMolecularNuclear & Particles PhysicsSuperheavy elementchemistryDecay chainAlpha decayAstronomical and Space SciencesExcitationNuclear Physics A
researchProduct

Quantum-state-selective decay spectroscopy of Ra213

2017

An experimental scheme combining the mass resolving power of a Penning trap with contemporary decay spectroscopy has been established at GSI Darmstadt. The Universal Linear Accelerator (UNILAC) at GSI Darmstadt provided a $^{48}\mathrm{Ca}$ beam impinging on a thin $^{170}\mathrm{Er}$ target foil. Subsequent to velocity filtering of reaction products in the Separator for Heavy Ion reaction Products (SHIP), the nuclear ground state of the $5n$ evaporation channel $^{213}\mathrm{Ra}$ was mass-selected in SHIPTRAP, and the $^{213}\mathrm{Ra}$ ions were finally transferred into an array of silicon strip detectors surrounded by large composite germanium detectors. Based on comprehensive geant4 s…

PhysicsPhysics::Instrumentation and Detectors010308 nuclear & particles physicsNuclear shell modelPenning trap01 natural sciencesNuclear physicsUniversal linear accelerator0103 physical sciencesGamma spectroscopyAlpha decayAtomic physicsNuclear Experiment010306 general physicsSpectroscopyGround stateRadioactive decayPhysical Review C
researchProduct

High-precision mass measurements for the isobaric multiplet mass equation atA= 52

2017

Masses of $^{52}$Co, $^{52}$Co$^m$, $^{52}$Fe, $^{52}$Fe$^m$, and $^{52}$Mn have been measured with the JYFLTRAP double Penning trap mass spectrometer. Of these, $^{52}$Co and $^{52}$Co$^m$ have been experimentally determined for the first time and found to be more bound than predicted by extrapolations. The isobaric multiplet mass equation for the $T=2$ quintet at $A=52$ has been studied employing the new mass values. No significant breakdown (beyond the $3\sigma$ level) of the quadratic form of the IMME was observed ($\chi^2/n=2.4$). The cubic coefficient was 6.0(32) keV ($\chi^2/n=1.1$). The excitation energies for the isomer and the $T=2$ isobaric analogue state in $^{52}$Co have been d…

massaspektrometriaNuclear and High Energy Physicsisobaric multipletProtonCo-52Proton decayastrofysiikkaPenning trapFOS: Physical scienceskupariQuadratic form (statistics)atomipainot114 Physical sciences01 natural sciences7. Clean energyPENNING TRAPS0103 physical sciencesNuclear Experiment (nucl-ex)Nuclear Experiment010306 general physicsNuclear ExperimentMultipletmass measurementPhysicsisotoopitSPECTROSCOPY010308 nuclear & particles physicsMIRROR NUCLEIRAMSEY METHODPenning trapMN-52Mass formulaANALOG STATESPROTON RADIOACTIVITYCOULOMB DISPLACEMENT ENERGIESIsobaric processBETA-RAYAtomic physicsydinfysiikkaDECAYExcitationJournal of Physics G: Nuclear and Particle Physics
researchProduct

Low-lying states in Ra219 and Rn215 : Sampling microsecond α -decaying nuclei

2018

Short-lived α-decaying nuclei "northeast" of 208Pb in the chart of nuclides were studied using the reaction 48Ca+243Am with the decay station TASISpec at TASCA, GSI Darmstadt. Decay energies and times from pile-up events were extracted with a tailor-made pulse-shape analysis routine and specific α-decay chains were identified in a correlation analysis. Decay chains starting with the even-even 220Ra and its odd-A neighbors, 219Fr, and 219,221Ra, with a focus on the 219Ra→215Rn decay, were studied by means of α-γ spectroscopy. A revised α-decay scheme of 219Ra is proposed, including a new decay branch from a previously not considered isomeric state at 17 keV excitation energy. Conclusions on …

Physics010308 nuclear & particles physicsNuclear shell modelHalf-life01 natural sciencesNuclear physicsMicrosecond0103 physical sciencesAtomic nucleusGamma spectroscopyAlpha decayDecay chainNuclide010306 general physicsPhysical Review C
researchProduct

Superheavy element flerovium (element 114) is a volatile metal.

2014

The electron shell structure of superheavy elements, i.e., elements with atomic number Z ≥ 104, is influenced by strong relativistic effects caused by the high Z. Early atomic calculations on element 112 (copernicium, Cn) and element 114 (flerovium, Fl) having closed and quasi-closed electron shell configurations of 6d(10)7s(2) and 6d(10)7s(2)7p1/2(2), respectively, predicted them to be noble-gas-like due to very strong relativistic effects on the 7s and 7p1/2 valence orbitals. Recent fully relativistic calculations studying Cn and Fl in different environments suggest them to be less reactive compared to their lighter homologues in the groups, but still exhibiting a metallic character. Expe…

Physicsgas chemistryValence (chemistry)ta114Electron shellchemistry.chemical_elementelement 114Inorganic ChemistryFleroviumsuperheavy elementsPhysisorptionchemistryAtomic orbitalChemical physicsSubatomic PhysicsAtomic numberPhysical and Theoretical ChemistryAtomic physicsRelativistic quantum chemistryCoperniciumInorganic chemistry
researchProduct

A new assessment of the alleged link between element 115 and element 117 decay chains

2016

Physics letters 760, 293-296(2016). doi:10.1016/j.physletb.2016.07.008

PhysicsNuclear and High Energy PhysicsIsotope010308 nuclear & particles physicsSuperheavy elementscorrelation analysisSuperheavy Elements53001 natural scienceslcsh:QC1-999Nuclear physics0103 physical sciencesCorrelation analysisSubatomic Physicsddc:530Atomic numberDecay chainAtomic physicsElement (category theory)010306 general physicsLink (knot theory)Spectroscopylcsh:PhysicsPhysics Letters B
researchProduct

Fission in the landscape of heaviest elements: Some recent examples

2016

The fission process still remains a main factor that determines the stability of the atomic nucleus of heaviest elements. Fission half-lives vary over a wide range, 10^−19 to 10^24 s. Present experimental techniques for the synthesis of the superheavy elements that usually measure α-decay chains are sensitive only in a limited range of half-lives, often 10^5 to 10^3 s. In the past years, measurement techniques for very short-lived and very long-lived nuclei were significantly improved at the gas-filled recoil separator TASCA at GSI Darmstadt. Recently, several experimental studies of fission-related phenomena have successfully been performed. In this paper, results on 254−256Rf and 266Lr ar…

Range (particle radiation)ta114010308 nuclear & particles physicsChemistryFissionPhysicsQC1-999nuclear stability[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Superheavy Elements7. Clean energy01 natural sciencesRecoil separatorNuclear physicssuperheavy elements0103 physical sciencesAtomic nucleusfissionddc:530010306 general physicsEPJ Web of Conferences
researchProduct

Ca48+Bk249Fusion Reaction Leading to ElementZ=117: Long-Livedα-DecayingDb270and Discovery ofLr266

2014

The superheavy element with atomic number Z=117 was produced as an evaporation residue in the 48Ca+249Bk fusion reaction at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. The radioactive decay of evaporation residues and their α-decay products was studied using a detection setup that allowed measuring decays of single atomic nuclei with half-lives between sub-μs and a few days. Two decay chains comprising seven α decays and a spontaneous fission each were identified and are assigned to the isotope 294-117 and its decay products. A hitherto unknown α-decay branch in 270Db (Z=105) was observed, which populated the new isotope 266Lr (Z=103). The identification of the long-liv…

Nuclear physicsPhysicsIsotopeAtomic nucleusGeneral Physics and AstronomyNuclear fusionDecay chainAtomic numberAtomic physicsRadioactive decayRecoil separatorSpontaneous fissionPhysical Review Letters
researchProduct

First superheavy element experiments at the GSI recoil separator TASCA: The production and decay of element 114 in thePu244(Ca48,3-4n) reaction

2011

Experiments with the new recoil separator, Transactinide Separator and Chemistry Apparatus (TASCA), at the GSI were performed by using beams of Ca-48 to irradiate targets of Pb206-208, which led to the production of No252-254 isotopes. These studies allowed for evaluation of the performance of TASCA when coupled to a new detector and electronics system. By following these studies, the isotopes of element 114 ((288-291)114) were produced in irradiations of Pu-244 targets with Ca-48 beams at compound nucleus excitation energies around 41.7 and 37.5 MeV, demonstrating TASCA's ability to perform experiments with picobarn-level cross sections. A total of 15 decay chains were observed and were as…

Nuclear physicsPhysicsNuclear reactionNuclear and High Energy PhysicsIsotopeNeutron emissionTransactinide elementDecay chainAlpha decayTransuranium elementRadioactive decayPhysical Review C
researchProduct

Search for elements 119 and 120

2020

A search for production of the superheavy elements with atomic numbers 119 and 120 was performed in the 50Ti+249Bk and 50Ti+249Cf fusion-evaporation reactions, respectively, at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. Over four months of irradiation, the 249Bk target partially decayed into 249Cf, which allowed for a simultaneous search for both elements. Neither was detected at cross-section sensitivity levels of 65 and 200 fb for the 50Ti+249Bk and 50Ti+249Cf reactions, respectively, at a midtarget beam energy of Elab=281.5 MeV. The nonobservation of elements 119 and 120 is discussed within the concept of fusion-evaporation reactions including various theoretical pr…

Physicselement 119010308 nuclear & particles physicselement 120Superheavy Elements01 natural sciencesIsland of stabilityRecoil separatorNuclear physicssuperheavy elementsProduction cross sectionSubatomic Physics0103 physical sciences540 Chemistry570 Life sciences; biologylow and intermediate energy heavy-ion reactionsAtomic numberIrradiationSensitivity (control systems)ydinfysiikka010306 general physicsBeam energyPhysical Review C
researchProduct

New Short-Lived IsotopeU221and the Mass Surface NearN=126

2015

Two short-lived isotopes ^{221}U and ^{222}U were produced as evaporation residues in the fusion reaction ^{50}Ti+^{176}Yb at the gas-filled recoil separator TASCA. An α decay with an energy of E_{α}=9.31(5)  MeV and half-life T_{1/2}=4.7(7)  μs was attributed to ^{222}U. The new isotope ^{221}U was identified in α-decay chains starting with E_{α}=9.71(5)  MeV and T_{1/2}=0.66(14)  μs leading to known daughters. Synthesis and detection of these unstable heavy nuclei and their descendants were achieved thanks to a fast data readout system. The evolution of the N=126 shell closure and its influence on the stability of uranium isotopes are discussed within the framework of α-decay reduced widt…

PhysicsIsotopeIsotopes of uraniumAnalytical chemistryGeneral Physics and AstronomyNuclear fusionAlpha decayAtomic physicsRecoil separatorPhysical Review Letters
researchProduct

Spectroscopic Tools Applied to Element Z = 115 Decay Chains

2014

Nuclides that are considered to be isotopes of element Z = 115 were produced in the reaction 48Ca + 243Am at the GSI Helmholtzzentrum für Schwerionenforschung Darmstadt. The detector setup TASISpec was used. It was mounted behind the gas-filled separator TASCA. Thirty correlated α-decay chains were found, and the energies of the particles were determined with high precision. Two important spectroscopic aspects of the offline data analysis are discussed in detail: the handling of digitized preamplified signals from the silicon strip detectors, and the energy reconstruction of particles escaping to upstream detectors relying on pixel-by-pixel dead-layer thicknesses.

PhysicsIsotopeSiliconPhysics::Instrumentation and DetectorsPhysicsQC1-999DetectorSeparator (oil production)Mechanical engineeringchemistry.chemical_element7. Clean energyNuclear physicschemistryPhysical SciencesSubatomic Physicsddc:530Decay chainNuclideNuclear ExperimentLine (formation)EPJ Web of Conferences
researchProduct

Fusion reaction Ca48+Bk249 leading to formation of the element Ts ( Z=117 )

2019

The heaviest currently known nuclei, which have up to 118 protons, have been produced in 48Ca induced reactions with actinide targets. Among them, the element tennessine (Ts), which has 117 protons, has been synthesized by fusing 48Ca with the radioactive target 249Bk, which has a half-life of 327 d. The experiment was performed at the gas-filled recoil separator TASCA. Two long and two short α decay chains were observed. The long chains were attributed to the decay of 294Ts. The possible origin of the short-decay chains is discussed in comparison with the known experimental data. They are found to fit with the decay chain patterns attributed to 293Ts. The present experimental results confi…

PhysicsNuclear physicsNuclear TheoryNuclear fusionDecay chainAlpha decayActinideSuperheavy ElementsNuclear ExperimentRecoil separatorPhysical Review C
researchProduct

Study of non-fusion products in the Ti50+Cf249 reaction

2018

The isotopic distribution of nuclei produced in the 50Ti + 249Cf reaction has been studied at the gas-filled recoil separator TASCA at GSI Darmstadt, which separates ions according to differences in magnetic rigidity. The bombardment was performed at an energy around the Bass barrier and with the TASCA magnetic fields set for collecting fusion-evaporation reaction products. Fifty-three isotopes located “north-east” of 208Pb were identified as recoiling products formed in non-fusion channels of the reaction. These recoils were implanted with energies in two distinct ranges; besides one with higher energy, a significant low-energy contribution was identified. The latter observation was not ex…

PhysicsNuclear and High Energy PhysicsIsotope010308 nuclear & particles physicsFission01 natural sciencesRecoil separatorMagnetic fieldIonNuclear physicsNon fusionRigidity (electromagnetism)0103 physical sciencesNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Spectroscopy along Flerovium Decay Chains: Discovery ofDs280and an Excited State inCn282

2021

A nuclear spectroscopy experiment was conducted to study α-decay chains stemming from isotopes of flerovium (element Z=114). An upgraded TASISpec decay station was placed behind the gas-filled separator TASCA at the GSI Helmholtzzentrum fur Schwerionenforschung in Darmstadt, Germany. The fusion-evaporation reactions ^{48}Ca+^{242}Pu and ^{48}Ca+^{244}Pu provided a total of 32 flerovium-candidate decay chains, of which two and eleven were firmly assigned to ^{286}Fl and ^{288}Fl, respectively. A prompt coincidence between a 9.60(1)-MeV α particle event and a 0.36(1)-MeV conversion electron marked the first observation of an excited state in an even-even isotope of the heaviest man-made eleme…

PhysicsGeneral Physics and Astronomychemistry.chemical_elementIsotopes of flerovium7. Clean energy01 natural sciencesIsland of stabilityFleroviumchemistryExcited state0103 physical sciencesDecay chainAlpha decayAtomic numberAtomic physics010306 general physicsSpectroscopyPhysical Review Letters
researchProduct

2012

To identify the atomic number of superheavy nuclei produced in Ca-48-induced fusion-evaporation reactions, an experiment aiming at measuring characteristic X-rays is being prepared at GSI, Darmstadt, Germany. The gas-filled separator TASCA will be employed, sending the residues towards the multi-coincidence detector setup TASISpec. Two ion-optical modes relying on differing magnetic polarities of the quadrupole magnets can be used at TASCA. New simulations and experimental tests of transmission and background suppression for these two focusing modes into TASISpec are presented.

PhysicsBackground suppressionDetectorX-rayGeneral Physics and AstronomyDecay chainAtomic numberAtomic physicsNuclear ExperimentQuadrupole magnetActa Physica Polonica B
researchProduct

Spectroscopy along flerovium decay chains. II : Fine structure in odd-A289Fl

2023

Fifteen correlated α-decay chains starting from the odd-A superheavy nucleus 289Fl were observed following the fusion-evaporation reaction 48Ca+244Pu. The results call for at least two parallel α-decay sequences starting from at least two different states of 289Fl. This implies that close-lying levels in nuclei along these chains have quite different spin-parity assignments. Further, observed α-electron and α-photon coincidences, as well as the α-decay fine structure along the decay chains, suggest a change in the ground-state spin assignment between 285Cn and 281Ds. Our experimental results, on the excited level structure of the heaviest odd-N nuclei to date, provide a direct testing groun…

ydinfysiikka
researchProduct

In-beam γ-ray spectroscopy of 94Ag

2023

A recoil-beta-tagging experiment has been per formed to study the excited T = 0 and T = 1 states in the odd–odd N = Z nucleus 94Ag, populated via the 40Ca(58Ni,1p3n)94Ag reaction. The experiment was con ducted using the MARA recoil separator and JUROGAM3 array at the Accelerator Laboratory of the University of Jyväskylä. Through correlating fast, high-energy beta decays at the MARA focal plane with prompt γ rays emitted at the reaction target, a number of transitions between excited states in 94Ag have been identified. The timing characteris tics of these transitions confirm that they fall within decay sequences that feed the short-lived T = 1 ground state of 94Ag. The transitions are propo…

spektroskopiahopeaydinfysiikka
researchProduct

β Decay of 127Cd and Excited States in 127In

2019

A dedicated spectroscopic study of the β decay of 127Cd was conducted at the IGISOL facility at the University of Jyväskylä. Following high-resolution mass separation in a Penning trap, β−γ−γcoincidences were used to considerably extend the decay scheme of 127In. The β-decaying 3/2+ and 11/2− states in 127Cd have been identified with the 127Cd ground state and the 283-keV isomer. Their respective half-lives have been measured to 0.45(128)s and 0.36(4) s. The experimentally observed βfeeding to excited states of 127In and the decay scheme of 127In are discussed in conjunction with large-scale shell-model calculations. peerReviewed

electromagnetic transitionsgamma-ray spectroscopynuclear shell modelPenning trapSubatomic Physicsshell modelisomer decaybeta decayydinfysiikkanuclear structure and decaysGamow-Teller strength
researchProduct

Spectroscopy along flerovium decay chains. III : Details on experiment, analysis, 282Cn, and spontaneous fission branches

2023

Flerovium isotopes (element Z=114) were produced in the fusion-evaporation reactions 48Ca+242,244Pu and studied with an upgraded TASISpec decay station placed in the focal plane of the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. Twenty-nine flerovium decay chains were identified by means of correlated implantation, α decay, and spontaneous fission events. Data analysis aspects and statistical assessments, primarily based on measured rates of various events, which laid the foundation for the comprehensive spectroscopic information on the flerovium decay chains, are presented in detail. Various decay scenarios of an excited state obse…

ydinfysiikka
researchProduct

On the adsorption and reactivity of element 114, flerovium

2022

Flerovium (Fl, element 114) is the heaviest element chemically studied so far. To date, its interaction with gold was investigated in two gas-solid chromatography experiments, which reported two different types of interaction, however, each based on the level of a few registered atoms only. Whereas noble-gas-like properties were suggested from the first experiment, the second one pointed at a volatile-metal-like character. Here, we present further experimental data on adsorption studies of Fl on silicon oxide and gold surfaces, accounting for the inhomogeneous nature of the surface, as it was used in the experiment and analyzed as part of the reported studies. We confirm that Fl is highly v…

superheavy elementsatomitatomifysiikkaadsorptionradiokemiaalkuaineetradiochemistrynuclear chemistryadsorptiorecoil separatorselement 114kemialliset ominaisuudet
researchProduct

Recoil-alpha-fission and Recoil-alpha-alpha-fission Chains Stemming from Element 115

2015

GSI Scientific Report 2014 - GSI Report 2015-1

PhysicsSubatomic Physics
researchProduct

Study of non-fusion products in the 50Ti + 249Cf reaction

2018

Physics letters / B B 784, 199 - 205 (2018). doi:10.1016/j.physletb.2018.07.058

ydinreaktiotproduction of radioactive nucleiddc:530multi-nucleon transfer reactionsquasifissionNuclear Experimentα decayydinfysiikka530
researchProduct

β decay of Cd 127 and excited states in In 127

2019

22 pags., 8 figs., 4 tabs., 1 app.

Physical Review C
researchProduct

117番元素Ts合成のための48Ca+249Bk融合反応

2019

We have performed an experiment to synthesize the element 117 (Ts) with the $^{48}$Ca+$^{249}$Bk fusion reaction. Four $\alpha$-decay chains attributed to the element 117 were observed. Two of them were long decay chains which can be assigned to the one originating from the $\alpha$ decay of $^{294}$Ts. The other two were short decay chains which are consistent with the one originating from the $\alpha$ decay of $^{293}$Ts. We have compared the present results with the literature data, and found that our present results mostly confirmed the literature data, leading to the firm confirmation of the synthesis of the element 117.

gas-filled separatorsuperheavy elementselement 117 (Ts)alpha decaySubatomic PhysicsNuclear Theorylow and intermediate energy heavy-ion reactionsydinfysiikkaNuclear Experimentnuclear structure and decays
researchProduct

Quantum-state-selective decay spectroscopy of 213Ra

2017

An experimental scheme combining the mass resolving power of a Penning trap with contemporary decay spectroscopy has been established at GSI Darmstadt. The Universal Linear Accelerator (UNILAC) at GSI Darmstadt provided a 48Ca beam impinging on a thin 170Er target foil. Subsequent to velocity filtering of reaction products in the Separator for Heavy Ion reaction Products (SHIP), the nuclear ground state of the 5n evaporation channel 213Ra was mass-selected in SHIPTRAP, and the 213Ra ions were finally transferred into an array of silicon strip detectors surrounded by large composite germanium detectors. Based on comprehensive geant4 simulations and supported by theoretical calculations, the …

gamma-ray spectroscopynuclear shell modelalpha decayPhysics::Instrumentation and DetectorsPenning trapSubatomic Physicsnuclear structureshell modelnuclear decaysNilsson-Strutinsky calculationsNuclear Experiment
researchProduct