0000000001046830

AUTHOR

A.c. Bryce

showing 3 related works from this author

Microreflectivity studies of wavelength control in oxidised AlGaAs microcavities

2003

Wet oxidation of GaAs/AlGaAs structures is an important technique in the processing of advanced devices such as vertical cavity surface emitting lasers (VCSELs). In one VCSEL application, the low-index and electrically-insulating AlxOy layers have been used to obtain high-reflectivity and broad bandwidth distributed Bragg reflector mirrors (DBRs). A further recent development has shown that combined lateral–vertical oxidation of intracavity AlGaAs layers can be used to tune the resonant wavelength of a semiconductor microcavity. The slow oxidation rate limits the lateral scale of practical wet oxidation to mesas structures of 50–100 μm in width. Therefore post-processing assessment of spect…

FabricationMaterials sciencebusiness.industryMechanical EngineeringPhysics::OpticsCondensed Matter PhysicsLaserDistributed Bragg reflectorVertical-cavity surface-emitting laserlaw.inventionWavelengthOpticsSemiconductorMechanics of MaterialslawOptical cavityMicroreflectivity wet oxidation DBRs microcavityOptoelectronicsGeneral Materials SciencebusinessSpectrographMaterials Science and Engineering: B
researchProduct

Selective modification of the band gaps of GaInNas/GaAs structures by quantum well intermixing techniques

2003

We report the unambiguous demonstration of controlled quantum well intermixing (QWI) in the technologically important GaInNAs/ GaAs 1.3 mum material system. QWI is a key technique to selectively modify the band gap of quantum wells, which has found broad application in semiconductor lasers and photonic integrated circuits (PICs). Extending such technology to GaInNAs/GaAs structures is highly desirable due to the technologically advantageous properties of this material system. Here, we investigate well-characterized GaInNAs quantum well material which has been annealed "to saturation" before QWI processing to allow unambiguous interpretation of results. After RTA at 700 degreesC for similar …

Quantum well intermixing GaInNAs Photonic integrated circuitsPhotoluminescenceMaterials scienceBand gapbusiness.industryPhotonic integrated circuitBioengineeringSemiconductor deviceSemiconductor laser theoryBiomaterialsSurface coatingMechanics of MaterialsOptoelectronicsPhotoluminescence excitationbusinessQuantum wellMaterials Science and Engineering: C
researchProduct

Quantum well intermixing in GaInNAs/GaAs structures

2003

We report on the characteristics of quantum well intermixing in GaInNAs/GaAs structures of differing N content. Rapid thermal annealing combined with SiO2 caps deposited on the surface of the samples is used to disorder 1.3 mum GaInNAs/GaAs multiquantum wells which have been preannealed in-situ to the stage of blueshift saturation. The different effects of two capping layer deposition techniques on the interdiffusion of In-Ga have been compared, particular regarding the role of sputtering processes. The dependence of quantum well intermixing-induced photoluminescence blueshift on N concentration has provided extra information on the intrinsic properties of the GaInNAs/GaAs material system. …

:Science::Physics::Optics and light [DRNTU]Materials sciencePhotoluminescencebusiness.industryAlloyGeneral Physics and Astronomyengineering.materialSettore ING-INF/01 - ElettronicaBlueshiftGallium arsenidechemistry.chemical_compoundchemistrySputteringQuantum well intermixing GaInNAsengineeringOptoelectronicsRapid thermal annealingbusinessSaturation (magnetic)Quantum well
researchProduct