0000000001047136

AUTHOR

Urbano L. França

showing 3 related works from this author

Cosmological lepton asymmetry with a nonzero mixing angle \theta13

2012

While the baryon asymmetry of the Universe is nowadays well measured by cosmological observations, the bounds on the lepton asymmetry in the form of neutrinos are still significantly weaker. We place limits on the relic neutrino asymmetries using some of the latest cosmological data, taking into account the effect of flavor oscillations. We present our results for two different values of the neutrino mixing angle \theta_{13}, and show that for large \theta_{13} the limits on the total neutrino asymmetry become more stringent, diluting even large initial flavor asymmetries. In particular, we find that the present bounds are still dominated by the limits coming from Big Bang Nucleosynthesis, …

Astrophysics and AstronomyNuclear and High Energy PhysicsParticle physicsmedia_common.quotation_subjectCosmic microwave backgroundCosmic background radiationAstrophysics::Cosmology and Extragalactic AstrophysicsEarly Universe7. Clean energy01 natural sciencesAsymmetryPartícules (Física nuclear)CosmologyBaryon asymmetryBig Bang nucleosynthesisPower Spectrum0103 physical sciences010306 general physicsTelescopemedia_commonPhysicsFlavor Oscillations010308 nuclear & particles physicsHigh Energy Physics::Phenomenology[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]ConstraintsParametersNeutrino DegeneracyHigh Energy Physics::ExperimentNeutrinoAstrophysics - Cosmology and Nongalactic AstrophysicsLepton
researchProduct

Model independent constraints on mass-varying neutrino scenarios

2009

Models of dark energy in which neutrinos interact with the scalar field supposed to be responsible for the acceleration of the Universe usually imply a variation of the neutrino masses on cosmological time scales. In this work we propose a parametrization for the neutrino mass variation that captures the essentials of those scenarios and allows one to constrain them in a model independent way, that is, without resorting to any particular scalar field model. Using WMAP 5 yr data combined with the matter power spectrum of SDSS and 2dFGRS, the limit on the present value of the neutrino mass is m(0) equivalent to m(nu)(z = 0) 0), totally consistent with no mass variation. These stringent bounds…

Nuclear and High Energy PhysicsParticle physicsAstrophysics and AstronomyAccelerating UniverseCosmology and Nongalactic Astrophysics (astro-ph.CO)Microwave Background Anisotropiesmedia_common.quotation_subjectFOS: Physical sciencesAstrophysicsCosmological constant01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPower-SpectrumNeutrino oscillation010303 astronomy & astrophysicsmedia_commonPhysicsMatter010308 nuclear & particles physicsMatter power spectrumHigh Energy Physics::PhenomenologyFísicaHubble-Space-TelescopeDark EnergyCMB cold spotCosmological ConstantUniverseHigh Energy Physics - PhenomenologySupernovaeDark energyHigh Energy Physics::ExperimentNeutrinoScalar fieldAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Probing interactions within the dark matter sector via extra radiation contributions

2013

The nature of dark matter is one of the most thrilling riddles for both cosmology and particle physics nowadays. While in the typical models the dark sector is composed only by weakly interacting massive particles, an arguably more natural scenario would include a whole set of gauge interactions which are invisible for the standard model but that are in contact with the dark matter. We present a method to constrain the number of massless gauge bosons and other relativistic particles that might be present in the dark sector using current and future cosmic microwave background data, and provide upper bounds on the size of the dark sector. We use the fact that the dark matter abundance depends…

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectDark matterCosmic microwave backgroundFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsCosmologyPartícules (Física nuclear)symbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)PlanckDigital sky surveymedia_commonPhysicsHigh Energy Physics::PhenomenologyUniverseHigh Energy Physics - PhenomenologyWeakly interacting massive particlessymbolsBaryon acoustic-oscillationsBaryon acoustic oscillationsAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's law
researchProduct