0000000001053150
AUTHOR
Saleh Mosaddegh
Adapted processing of catadioptric images using polarization imaging
A non parametric method that defines a pixel neighborhood within catadioptric images is presented in this paper. It is based on an accurate modeling of the mirror shape by using polarization imaging. Unlike the most of current processing methods in the literature, this method is non-parametric and can deal with the deformation of catadioptric images. This paper demonstrates how an appropriate neighborhood can be derived from the polarization parameters by estimation of the degree of polarization and the angle of polarization which in return directly provide an adapted neighborhood of each pixel that can be used to perform image derivation, edge detection, interest point detection and namely…
Short baseline line matching for central imaging systems
We develop a generic line matching method especially applicable to omnidirectional images taken from constructed scenes with short baseline motion where the motion of the imaging system between two views is mainly an arbitrary rotation and the translation of the camera between two views with respect to its distance to the imaged scene is negligible. We start by studying the relationship between images of lines on unitary sphere followed by proposing a simple algorithm for simultaneously matching vanishing points and lines. The developed algorithm is very simple, yet it works on images captured by all types of central imaging systems, including perspective, fish-eye and catadioptric images. …
Motion estimation and reconstruction of piecewise planar scenes from two views
The task of recovering the camera motion relative to the environment (motion estimation) is fundamental to many computer vision applications. We present an algorithm for reconstruction of piece-wise planar scenes from only two views and based on minimum line correspondences. We first recover camera rotation by matching vanishing points based on the methods already exist in the literature and then recover the camera translation by searching among a family of hypothesized planes passing through one line. Unlike algorithms based on line segments, the presented algorithm does not require an overlap between two line segments or more than one line correspondence across more than two views to reco…
A Generic Method of Line Matching for Central Imaging Systems under Short-Baseline Motion
Line matching across images taken by a central imaging system (perspective or catadioptric) with focus on short baseline motion of the system is proposed. The relationship between images of lines on unitary sphere is studied and a simple algorithm for matching lines are proposed assuming the rotation of the system is known apriori or it can be estimated from some correspondences in two views. Two methods are discussed for retrieving R in the case it is not known apriori. Experimental results on both synthetic and real images are also presented.
Line based motion estimation and reconstruction of piece-wise planar scenes
We present an algorithm for reconstruction of piece-wise planar scenes from only two views and based on minimum line correspondences. We first recover camera rotation by matching vanishing points based on the methods already exist in the literature and then recover the camera translation by searching among a family of hypothesized planes passing through one line. Unlike algorithms based on line segments, the presented algorithm does not require an overlap between two line segments or more that one line correspondence across more than two views to recover the translation and achieves the goal by exploiting photometric constraints of the surface around the line. Experimental results on real i…
Line Segment Based Structure and Motion from Two Views: a Practical Issue
International audience
Two View Line-Based Motion and Structure Estimation for Planar Scenes
We present an algorithm for reconstruction of piece-wise planar scenes from only two views and based on minimum line correspondences. We first recover camera rotation by matching vanishing points based on the methods already exist in the literature and then recover the camera translation by searching among a family of hypothesized planes passing through one line. Unlike algorithms based on line segments, the presented algorithm does not require an overlap between two line segments or more that one line correspon- dence across more than two views to recover the translation and achieves the goal by exploiting photometric constraints of the surface around the line. Experimental results on real…