0000000001053362
AUTHOR
Frank Reuter
The interplay of crystallization kinetics and morphology during the formation of SnO2 nanorods: snapshots of the crystallization from fast microwave reactions
A microwave-assisted reaction pathway to rutile SnO2nanorods was investigated. The microwave-treatment significantly reduces the reaction time compared to standard hydro-/solvothermal techniques. By moving the overall process into a shorter time slot, the growth and crystal formation during the reaction could be monitored via snapshots by trapping the intermediates through quenching. To gain a better insight into the template-free growth of one-dimensional (1D) nanostructures, a parameter-dependent (various temperatures/pressures and times were investigated) study was carried out. For all materials, the phase purity and crystallite sizes were determined by X-ray powder diffraction (XRD). Th…
Structural, magnetic and electronic characterization of an isostructural series of dinuclear complexes of 3d metal ions bridged by tpbd
Abstract Dinuclear complexes of the type [{M(H2O)(phen)}2(μ-tpbd)](ClO4)4 with N,N,N′,N′-Tetrakis-(2-pyridylmethyl)-benzene-1,4-diamine (tpbd) as bridging ligand and M = Mn(II) (1), Fe(II) (2), Co(II) (3), Ni(II) (4), Cu(II) (5), Zn(II) (6) were synthesized, structurally analyzed and their magnetic as well as their electrochemical properties are determined. A ligand-centered one-electron oxidation leads to radical complexes for which the lifetimes are strongly dependent on the coordinated metal ion as followed from time-resolved UV–Vis absorption spectroscopy. In addition to the six homometallic dinuclear complexes, one analog heterometallic Mn(II)/Ni(II) compound (7) of the same constituti…