0000000001053880

AUTHOR

Rodrigo Picos

0000-0002-9167-6422

showing 2 related works from this author

Landsat and Local Land Surface Temperatures in a Heterogeneous Terrain Compared to MODIS Values

2016

Land Surface Temperature (LST) as provided by remote sensing onboard satellites is a key parameter for a number of applications in Earth System studies, such as numerical modelling or regional estimation of surface energy and water fluxes. In the case of Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra or Aqua, pixels have resolutions near 1 km 2 , LST values being an average of the real subpixel variability of LST, which can be significant for heterogeneous terrain. Here, we use Landsat 7 LST decametre-scale fields to evaluate the temporal and spatial variability at the kilometre scale and compare the resulting average values to those provided by MODIS for the same obser…

010504 meteorology & atmospheric sciencesMeteorologyLandsat 7Science0211 other engineering and technologiesland surface temperatureTerrain02 engineering and technology01 natural sciencesNet radiometertime-space variabilityTermodinàmicaSuperfícies (Fisica)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingGround truthRadiometerQSubpixel renderingsurface heterogeneitysurface heterogeneity; land surface temperature; MODIS; Landsat 7; time-space variability; ground truthMODISGeneral Earth and Planetary SciencesEnvironmental scienceSpatial variabilityModerate-resolution imaging spectroradiometerScale (map)ground truthRemote Sensing
researchProduct

Study of Temperature Heterogeneities at Sub-Kilometric Scales and Influence on Surface–Atmosphere Energy Interactions

2019

The retrieval of land surface temperature (LST) from remote sensing techniques has been studied and validated during the past 40 years, leading to important improvements. Accurate LST values are currently obtained through measurements using medium resolution thermal infrared (TIR) sensors. However, the most recent review reports demonstrated that the future TIR LST products need to obtain reliable temperature values at a high spatial resolution (100 m or higher) to study temperature variations between different elements in a heterogeneous kilometric area. The launch of high-resolution TIR sensors in the near future requires studies of the temporal evolution and spatial heterogeneities of th…

Advection0211 other engineering and technologiesTerrain02 engineering and technologyTemperature measurementAtmosphereSea surface temperatureThermalGeneral Earth and Planetary SciencesEnvironmental scienceSatelliteElectrical and Electronic EngineeringImage resolution021101 geological & geomatics engineeringRemote sensingIEEE Transactions on Geoscience and Remote Sensing
researchProduct