0000000001053974
AUTHOR
A. A. Kwiatkowski
Dawning of the N=32 shell closure seen through precision mass measurements of neutron-rich titanium isotopes
A precision mass investigation of the neutron-rich titanium isotopes 51 − 55 Ti was performed at TRIUMF’s Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N = 32 shell closure, and the overall uncertainties of the 52 − 55 Ti mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N = 32 , narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N = 32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements a…
Nuclear moments and charge radii of neutron-deficient francium isotopes and isomers
Collinear laser fluorescence spectroscopy has been performed on the ground and isomeric states of 204,206Fr in order to determine their spins, nuclear moments, and changes in mean-squared charge radii. A new experimental technique has been developed as part of this work which much enhances the data collection rate while maintaining the high resolution. This has permitted the extension of this study to the two isomeric states in each nucleus. The investigation of nuclear g factors and mean-squared charge radii indicates that the neutron-deficient Fr isotopes lie in a transitional region from spherical towards more collective structures. peerReviewed
FRIB and the GW170817 Kilonova
In July 2018 an FRIB Theory Alliance program was held on the implications of GW170817 and its associated kilonova for r-process nucleosynthesis. Topics of discussion included the astrophysical and nuclear physics uncertainties in the interpretation of the GW170817 kilonova, what we can learn about the astrophysical site or sites of the r process from this event, and the advances in nuclear experiment and theory most crucial to pursue in light of the new data. Here we compile a selection of scientific contributions to the workshop, broadly representative of progress in r-process studies since the GW170817 event.
FRIB and the GW170817 Kilonova
In July 2018 an FRIB Theory Alliance program was held on the implications of GW170817 and its associated kilonova for r-process nucleosynthesis. Topics of discussion included the astrophysical and nuclear physics uncertainties in the interpretation of the GW170817 kilonova, what we can learn about the astrophysical site or sites of the r process from this event, and the advances in nuclear experiment and theory most crucial to pursue in light of the new data. Here we compile a selection of scientific contributions to the workshop, broadly representative of progress in r-process studies since the GW170817 event.