0000000001053974

AUTHOR

A. A. Kwiatkowski

showing 4 related works from this author

Dawning of the N=32 shell closure seen through precision mass measurements of neutron-rich titanium isotopes

2018

A precision mass investigation of the neutron-rich titanium isotopes 51 − 55 Ti was performed at TRIUMF’s Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N = 32 shell closure, and the overall uncertainties of the 52 − 55 Ti mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N = 32 , narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N = 32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements a…

Materials scienceNuclear Theorynucl-thNuclear TheoryAb initioGeneral Physics and Astronomychemistry.chemical_elementFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Mass spectrometrynucl-ex01 natural sciencesNuclear Theory (nucl-th)symbols.namesake0103 physical sciencesPhysics::Atomic and Molecular ClustersNeutron[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentIsotope010308 nuclear & particles physicsStarke Wechselwirkung und exotische Kerne – Abteilung BlaumPenning trapchemistry13. Climate actionsymbolsIon trapAtomic physicsTitan (rocket family)Titanium
researchProduct

Nuclear moments and charge radii of neutron-deficient francium isotopes and isomers

2015

Collinear laser fluorescence spectroscopy has been performed on the ground and isomeric states of 204,206Fr in order to determine their spins, nuclear moments, and changes in mean-squared charge radii. A new experimental technique has been developed as part of this work which much enhances the data collection rate while maintaining the high resolution. This has permitted the extension of this study to the two isomeric states in each nucleus. The investigation of nuclear g factors and mean-squared charge radii indicates that the neutron-deficient Fr isotopes lie in a transitional region from spherical towards more collective structures. peerReviewed

nuclear momentfranciumcharge radiusNuclear Experiment
researchProduct

FRIB and the GW170817 Kilonova

2018

In July 2018 an FRIB Theory Alliance program was held on the implications of GW170817 and its associated kilonova for r-process nucleosynthesis. Topics of discussion included the astrophysical and nuclear physics uncertainties in the interpretation of the GW170817 kilonova, what we can learn about the astrophysical site or sites of the r process from this event, and the advances in nuclear experiment and theory most crucial to pursue in light of the new data. Here we compile a selection of scientific contributions to the workshop, broadly representative of progress in r-process studies since the GW170817 event.

High Energy Astrophysical Phenomena (astro-ph.HE)Nuclear Theory (nucl-th)Astrophysics - Solar and Stellar AstrophysicsNuclear TheoryFOS: Physical sciencesAstrophysics - High Energy Astrophysical PhenomenaSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

FRIB and the GW170817 Kilonova

2018

In July 2018 an FRIB Theory Alliance program was held on the implications of GW170817 and its associated kilonova for r-process nucleosynthesis. Topics of discussion included the astrophysical and nuclear physics uncertainties in the interpretation of the GW170817 kilonova, what we can learn about the astrophysical site or sites of the r process from this event, and the advances in nuclear experiment and theory most crucial to pursue in light of the new data. Here we compile a selection of scientific contributions to the workshop, broadly representative of progress in r-process studies since the GW170817 event.

High Energy Astrophysical Phenomena (astro-ph.HE)Nuclear Theory (nucl-th)FOS: Physical sciencesSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct