0000000001054337

AUTHOR

Lotfi Boubekeur

N-body simulations with generic non-Gaussian initial conditions I: Power Spectrum and halo mass function

We address the issue of setting up generic non-Gaussian initial conditions for N-body simulations. We consider inflationary-motivated primordial non-Gaussianity where the perturbations in the Bardeen potential are given by a dominant Gaussian part plus a non-Gaussian part specified by its bispectrum. The approach we explore here is suitable for any bispectrum, i.e. it does not have to be of the so-called separable or factorizable form. The procedure of generating a non-Gaussian field with a given bispectrum (and a given power spectrum for the Gaussian component) is not univocal, and care must be taken so that higher-order corrections do not leave a too large signature on the power spectrum.…

research product

Phenomenological approaches of inflation and their equivalence

In this work, we analyze two possible alternative and model-independent approaches to describe the inflationary period. The first one assumes a general equation of state during inflation due to Mukhanov, while the second one is based on the slow-roll hierarchy suggested by Hoffman and Turner. We find that, remarkably, the two approaches are equivalent from the observational viewpoint, as they single out the same areas in the parameter space, and agree with the inflationary attractors where successful inflation occurs. Rephrased in terms of the familiar picture of a slowly rolling, canonically normalized scalar field, the resulting inflaton excursions in these two approaches are almost ident…

research product

Current status of modified gravity

We revisit the cosmological viability of the Hu-Sawicki modified gravity scenario. The impact of such a modification on the different cosmological observables, including gravitational waves, is carefully described. The most recent cosmological data, as well as constraints on the relationship between the clustering parameter ${\ensuremath{\sigma}}_{8}$ and the current matter mass-energy density ${\mathrm{\ensuremath{\Omega}}}_{m}$ from cluster number counts and weak lensing tomography, are considered in our numerical calculations. The strongest bound we find is $|{f}_{R0}|l3.7\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$ at 95% C.L. Forthcoming cluster surveys covering $10\text{ …

research product

Sachs-Wolfe at second order: the CMB bispectrum on large angular scales

We calculate the Cosmic Microwave Background anisotropy bispectrum on large angular scales in the absence of primordial non-Gaussianities, assuming exact matter dominance and extending at second order the classic Sachs-Wolfe result delta T/T = Phi/3. The calculation is done in Poisson gauge. Besides intrinsic contributions calculated at last scattering, one must consider integrated effects. These are associated to lensing, and to the time dependence of the potentials (Rees-Sciama) and of the vector and tensor components of the metric generated at second order. The bispectrum is explicitly computed in the flat-sky approximation. It scales as l(-4) in the scale invariant limit and the shape d…

research product

The present and future of the most favoured inflationary models after $Planck$ 2015

The value of the tensor-to-scalar ratio $r$ in the region allowed by the latest $Planck$ 2015 measurements can be associated to a large variety of inflationary models. We discuss here the potential of future Cosmic Microwave Background cosmological observations in disentangling among the possible theoretical scenarios allowed by our analyses of current $Planck$ temperature and polarization data. Rather than focusing only on $r$, we focus as well on the running of the primordial power spectrum, $\alpha_s$ and the running of thereof, $\beta_s$. Our Fisher matrix method benefits from a detailed and realistic appraisal of the expected foregrounds. Future cosmological probes, as the COrE mission…

research product

Cold positrons from decaying dark matter

Many models of dark matter contain more than one new particle beyond those in the Standard Model. Often heavier particles decay into the lightest dark matter particle as the Universe evolves. Here we explore the possibilities that arise if one of the products in a (Heavy Particle) $\rightarrow$ (Dark Matter) decay is a positron, and the lifetime is shorter than the age of the Universe. The positrons cool down by scattering off the cosmic microwave background and eventually annihilate when they fall into Galactic potential wells. The resulting 511 keV flux not only places constraints on this class of models but might even be consistent with that observed by the INTEGRAL satellite.

research product

Primordial power spectrum features in phenomenological descriptions of inflation

We extend an alternative, phenomenological approach to inflation by means of an equation of state and a sound speed, both of them functions of the number of $e$-folds and four phenomenological parameters. This approach captures a number of possible inflationary models, including those with non-canonical kinetic terms or scale-dependent non-gaussianities. We perform Markov Chain Monte Carlo analyses using the latest cosmological publicly available measurements, which include Cosmic Microwave Background (CMB) data from the Planck satellite. Within this parametrization, we discard scale invariance with a significance of about $10\sigma$, and the running of the spectral index is constrained as …

research product

The degenerate gravitino scenario

In this work, we explore the "degenerate gravitino" scenario where the mass difference between the gravitino and the lightest MSSM particle is much smaller than the gravitino mass itself. In this case, the energy released in the decay of the next to lightest sypersymmetric particle (NLSP) is reduced. Consequently the cosmological and astrophysical constraints on the gravitino abundance, and hence on the reheating temperature, become softer than in the usual case. On the other hand, such small mass splittings generically imply a much longer lifetime for the NLSP. We find that, in the constrained MSSM (CMSSM), for neutralino LSP or NLSP, reheating temperatures compatible with thermal leptogen…

research product

On the current status of Modified Gravity

We revisit the cosmological viability of the Hu $\&$ Sawicki modified gravity scenario. The impact of such a modification on the different cosmological observables, including gravitational waves, is carefully described. The most recent cosmological data, as well as constraints on the relationship between the clustering parameter $\sigma_8$ and the current matter mass-energy density $\Omega_m$ from cluster number counts and weak lensing tomography, are considered in our numerical calculations. The strongest bound we find is $|f_{R0}| < 3.7 \times 10^{-6}$ at $95\%$~CL. Forthcoming cluster surveys covering 10,000 deg$^2$ in the sky, with galaxy surface densities of $\mathcal{O}(10)$~arcmin$^{…

research product

Do current data prefer a nonminimally coupled inflaton?

We examine the impact of a non-minimal coupling of the inflaton to the Ricci scalar, $\frac12 \xi R\phi^2$, on the inflationary predictions. Such a non-minimal coupling is expected to be present in the inflaton Lagrangian on fairly general grounds. As a case study, we focus on the simplest inflationary model governed by the potential $V\propto \phi^2$, using the latest combined 2015 analysis of Planck and BICEP2/Keck Array. We find that the presence of a coupling $\xi$ is favoured at a significance of $99\%$ CL, assuming that nature has chosen the potential $V\propto \phi^2$ to generate the primordial perturbations and a number of e-foldings $N=60$. Within the context of the same scenario, …

research product

Model-independent fit to Planck and BICEP2 data

Inflation is the leading theory to describe elegantly the initial conditions that led to structure formation in our universe. In this paper, we present a novel phenomenological fit to the Planck, WMAP polarisation (WP) and the BICEP2 datasets using an alternative parameterisation. Instead of starting from inflationary potentials and computing the inflationary observables, we use a phenomenological parameterisation due to Mukhanov, describing inflation by an effective equation-of-state, in terms of the number of e-folds and two phenomenological parameters $\alpha$ and $\beta$. Within such a parametrisation, which captures the different inflationary models in a model-independent way, the valu…

research product

Running of featureful primordial power spectra

Current measurements of the temperature and polarization anisotropy power spectra of the Cosmic Microwave Background (CMB) seem to indicate that the naive expectation for the slow-roll hierarchy within the most simple inflationary paradigm may not be respected in nature. We show that a primordial power spectra with localized features could in principle give rise to the observed slow-roll anarchy when fitted to a featureless power spectrum. Future CMB missions have the key to disentangle among the two possible paradigms and firmly establish the slow-roll mechanism as the responsible one for the inflationary period in the early universe. From a model comparison perspective, and assuming that …

research product