0000000001054917

AUTHOR

Vincenzo Citro

Towards a quantitative comparison between global and local stability analysis

A methodology is proposed here to estimate the stability characteristics of bluff-body wakes using local analysis under the assumption of weakly non-parallel flows. In this connection, a generalisation of the classic spatio-temporal stability analysis for fully three-dimensional flows is first described. Secondly, an additional higher-order correction term with respect to the common saddle-point global frequency estimation is included in the analysis. The proposed method is first validated for the case of the flow past a circular cylinder and then applied to two fully three-dimensional flows: the boundary layer flow over a wall-mounted hemispherical body and the wake flow past a fixed spher…

research product

Boundary-layer Flows Past an Hemispherical Roughness Element: DNS, Global Stability and Sensitivity Analysis

Abstract We investigate the full three-dimensional instability mechanism arising in the wake of an hemispherical roughness element immersed in a laminar Blasius boundary layer. The inherent three-dimensional flow pattern beyond the critical Reynolds number is characterized by coherent vortical structures called hairpin vortices. Direct numerical simulation is used to analyze the formation and the shedding of hairpin packets inside the shear layer. The first bifurcation characteristics are investigated by global stability tools. We show the spatial structure of the linear direct and adjoint global eigenmodes of the linearized Navier-Stokes operator and use structural sensitivity analysis to …

research product