0000000001055464
AUTHOR
Fabi Prezja
H&E Multi-Laboratory Staining Variance Exploration with Machine Learning
In diagnostic histopathology, hematoxylin and eosin (H&E) staining is a critical process that highlights salient histological features. Staining results vary between laboratories regardless of the histopathological task, although the method does not change. This variance can impair the accuracy of algorithms and histopathologists’ time-to-insight. Investigating this variance can help calibrate stain normalization tasks to reverse this negative potential. With machine learning, this study evaluated the staining variance between different laboratories on three tissue types. We received H&E-stained slides from 66 different laboratories. Each slide contained kidney, skin, and colon tissue sampl…
DeepFake knee osteoarthritis X-rays from generative adversarial neural networks deceive medical experts and offer augmentation potential to automatic classification
Recent developments in deep learning have impacted medical science. However, new privacy issues and regulatory frameworks have hindered medical data sharing and collection. Deep learning is a very data-intensive process for which such regulatory limitations limit the potential for new breakthroughs and collaborations. However, generating medically accurate synthetic data can alleviate privacy issues and potentially augment deep learning pipelines. This study presents generative adversarial neural networks capable of generating realistic images of knee joint X-rays with varying osteoarthritis severity. We offer 320,000 synthetic (DeepFake) X-ray images from training with 5,556 real images. W…