0000000001055928

AUTHOR

Adriana D'angelo

showing 26 related works from this author

ELECTROCHEMICAL TREATMENT OF WASTEWATERS DRIVEN BY REVERSE ELECTRODIALYSIS PROCESSES

2014

Wastewater treatment technology is undergoing a transformation due to more restrictive regulations governing the dischar ge and disposal of hazardous pollutants. Electrochemical based technologies are very promising methods for treating wastewaters containing organic and inorganic pollutants resistant to biological processes or toxic for microorganisms. These methods present numerous advantages including the utilisation of a green reagent such as the electron, very high removal of numerous recalcitrant pollutants, efficient disinfection, high flexibility and no necessity to transport or stock chemical oxidants or reducents. O n the other hand, a wide utilisation of such methods is likely to…

reverse electrodialysis AO7
researchProduct

Towards the simultaneous generation of electric energy and the abatement of organic pollutants by reverse electrodialysis processes

2012

In reverse electrodialysis (RED) processes, electrical energy is directly extracted from chemical potential gradients arising from salinity differences, especially from sea and river water [1]. In RED there are at least four complementary elements: (1) electrodes, where electron transfer reactions occur to allow the transformation of the charge carrier from ion to electron; (2) ion selective exchange membranes, which allow the selective transport of ions; (3) solvents, which make a continuum for ion transport; (4) electrolytes, i.e. the current carriers between cathode and anode. The redox process is usually chosen in order to limit the energetic losses, the cost of redox specie and electro…

REVERSE ELECTRODIALYSIS
researchProduct

Energy generation and abatement of Acid Orange 7 in reverse electrodialysis cells using salinity gradients

2015

Abstract The simultaneous generation of electric energy and the treatment of wastewaters contaminated by an organic pollutant resistant to conventional biological processes, Acid Orange 7 (AO7), was achieved for the first time using proper redox processes by reverse electrodialysis using salinity gradients. The stack was fed with two aqueous solutions with different concentrations of NaCl and a synthetic wastewater contaminated by AO7. Various electrochemical approaches including electro-Fenton, electrogeneration of active chlorine (IOAC) and coupled process were performed in a stack equipped with 40–60 cell pairs and studied by focused electrolyses. The effect of the number of cell pairs a…

Electrodialysis reversalAqueous solutionChromatographyChemistryAO7General Chemical EngineeringInorganic chemistrychemistry.chemical_elementWastewater treatmentElectrodialysisSettore ING-IND/27 - Chimica Industriale E TecnologicaElectrochemistryREDRedoxAnalytical ChemistryEnergy generationWastewaterReversed electrodialysisReverse electrodialysiElectrochemistryChlorine
researchProduct

Electrochemical Processe s and Apparatuses for the Abatement of Acid Orange 7 in Water

2014

We have studied the electrochemical treatment of aqu eous solutions contaminated by Acid Orange 7 (AO7) by electro-Fenton process (EF). The main object ive was to evaluate how the electrochemical route affects the performances of the d egradation process. EF process was carried out in a number of very different reactors: conventional bench scale electrochem ical cell, microfluidic electrochemical reactor, microbial fuel cell and stack for reverse electrodialysis processes. The utilisation of micro devices allowed to work without the addition of a supporting elec trolyte and improved the performances of EF. Microbial fuel cell did not need the supply of electric energy bu t our device requir…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicireverse electrodialysis microreactor microbial fuel cell AO7 electrofentonSettore ING-IND/27 - Chimica Industriale E Tecnologica
researchProduct

SELECTION OF REDOX SYSTEMS FOR REVERSE ELECTRODIALYSIS PROCESSES

2012

In reverse electrodialysis (RED) processes, electrical energy is directly extracted from chemical potential gradients arising from salinity differences, especially from sea and river water. In RED there are at least four complementary elements: (1) electrodes, where electron transfer reactions occur to allow the transformation of the charge carrier from ion to electron; (2) ion selective exchange membranes, which allow the selective transport of ions; (3) solvents, which make a continuum for ion transport; (4) electrolytes, i.e. the current carriers between cathode and anode. Studies on RED processes were mainly focused on membranes but also on several other aspects including electrolyte co…

REDOX SYSTEM REVERSE ELECTRODIALYSIS
researchProduct

Optimization of the performance of an air-cathode MFC by changing solid retention time

2017

Microbial fuel cellWaste managementRenewable Energy Sustainability and the EnvironmentAir cathodeGeneral Chemical EngineeringOrganic Chemistry02 engineering and technology010501 environmental sciences021001 nanoscience & nanotechnology01 natural sciencesPollutionInorganic ChemistryFuel TechnologyEnvironmental science0210 nano-technologyWaste Management and DisposalRetention time0105 earth and related environmental sciencesBiotechnologyJournal of Chemical Technology & Biotechnology
researchProduct

INVESTIGATION OF ELECTRODE MATERIAL-REDOX COUPLE FOR REVERSE ELECTRODYALISIS PROCESSES. PART I: IRON REDOX COUPLES.

2012

The performances of electrodialysis (ED) and reverse electrodialysis (RED) processes depend on several factors, including the nature of the electrode material and of the redox couple adopted to make possible the conversion between electric power and chemical potential. In this paper, the possible utilization of iron-based redox couples (FeCl3/FeCl2, hexacyanoferrate(III)/hexacyanoferrate(II) and Fe(III)-EDTA/Fe(II)-EDTA) on graphite and DSA electrodes for RED processes was studied by a detailed experimental investigation. The hexacyanoferrate(III)/hexacyanoferrate(II) system was stable for lonf time (more than 12 days) in the absence of light and oxygen at high redox couple concentrations a…

Electrode reactionRedox couple Iron complexesReverse ElectrodialysiElectrodialysi
researchProduct

Investigation of electrode material - redox couple systems for reverse electrodialysis processes

2012

REDOX SYSTEM REVERSE ELECTRODIALYSIS
researchProduct

Optimization of the performance of an air–cathode MFC by changing solid retention time

2017

BACKGROUND This work is focused on the optimization of the performances of air-cathode microbial fuel cells (MFC) by changing the solid retention time (SRT) of the suspended biomass culture. RESULTS Five MFCs inoculated with activated sludge obtained from a municipal wastewater treatment plant were fed with a highly-concentrated acetate solution (10 000 ppm COD) and operated over two-month tests in order to determine how SRT may influence the performances of the bio-electrogenic cells. The MFC operated at SRTs of 2.5 days was found to outperform the other cells, operated at SRT of 1.4, 5.0, 7.4 and 10.0 days. In order to evaluate the possibility of using SRT as a manipulated parameter for t…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicisolid retention time (SRT)acetate air-cathodeMicrobial fuel cellsSettore ING-IND/27 - Chimica Industriale E TecnologicaSludge agePilas de combustible microbianasmicrobial fuel cellSolid retention time (SRT)Acetate air-cathodeAcetato de aire-cátodoTiempo de retención de sólidos (SRT)human activitiessludge ageEdad del lodo
researchProduct

On the regeneration of thermally regenerative ammonia batteries

2018

In the past few years, thermally regenerative ammonia battery (TRAB) has been proposed as an effective tool to recover waste heat at temperatures below 130 °C. Most of the literature available is devoted to the power production step, with less attention being given to the regeneration step (e.g. the removal of ammonia from the anolyte). In this paper, the TRAB is analyzed with particular attention to the regeneration step and to the study of various generation of energy-regeneration cycles. It was shown that approximately 90 °C is necessary for the regeneration step due to the fact that ammonia is present in the anolyte mainly as a complex. Various cycles were performed with success, demons…

Battery (electricity)Thermally regenerative ammonia battery TRAB TREC Regeneration Waste heat Ammonia–copper complexMaterials scienceWaste managementGeneral Chemical Engineering02 engineering and technologySettore ING-IND/27 - Chimica Industriale E Tecnologica010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical sciencesAmmoniachemistry.chemical_compoundchemistryWaste heatMaterials ChemistryElectrochemistry0210 nano-technologyRegeneration (ecology)Journal of Applied Electrochemistry
researchProduct

Investigation of electrode material – redox couple systems for reverse electrodialysis processes. Part II: Experiments in a stack with 10–50 cell pai…

2013

Abstract The performances of reverse electrodialysis depend on several factors, including the nature of the electrode material and of the redox processes adopted to make possible the conversion between chemical potential and electric power. In this paper the possible utilization of various redox processes (reduction/oxidation of iron species, oxidation and reduction of water, oxidation of chlorine and reduction of water) was studied in a stack equipped with 10–50 cell pairs and by focused electrolyses in a three compartment cell. The effect of selected redox processes on power density output and eventual contamination of saline solutions flowing in the stack was evaluated in detail. The eff…

Redox processes StackGeneral Chemical EngineeringInorganic chemistrychemistry.chemical_element02 engineering and technology010501 environmental sciencesElectrodialysi01 natural sciencesRedoxAnalytical ChemistryStack (abstract data type)Reversed electrodialysisElectrochemistryChlorine0105 earth and related environmental sciencesPower densityElectrode reactionElectrodialysis reversalElectrolysis of waterElectrodialysis; Reverse Electrodialysis; Electrode reaction; Redox processes StackReverse ElectrodialysiElectrodialysis021001 nanoscience & nanotechnology6. Clean waterchemistry13. Climate action0210 nano-technologyJournal of Electroanalytical Chemistry
researchProduct

A single-chamber membraneless microbial fuel cell exposed to air using Shewanella putrefaciens

2016

Abstract Microbial Fuel Cells (MFCs) are bio-electrochemical devices which convert the chemical energy content of organic fuels into electricity, thanks to the ability of anode respiring bacteria to give electrons to the anode. This result is usually achieved under anaerobic conditions, obtained with a sealed anode chamber. Despite this, Shewanella oneidensis has been recognized by many authors to obtain the same results in presence of air. Furthermore, another member of the Pseudomonaceae family, Shewanella putrefaciens, has also shown the capability to catalyze the cathodic oxygen reduction. In this work the capability of S. putrefaciens to work under both anaerobic and micro-aerobic cond…

Microbial fuel cellMicrobial fuel cellHorizontal cathodeGeneral Chemical EngineeringShewanella putrefaciens02 engineering and technology010501 environmental sciencesShewanella putrefaciens01 natural sciencesCompact graphite cathodeAnalytical ChemistryCathodic protectionlaw.inventionlawElectrochemistryMembraneless MFCGraphiteShewanella oneidensis0105 earth and related environmental sciencesbiologyChemistrySettore ING-IND/27 - Chimica Industriale E Tecnologica021001 nanoscience & nanotechnologybiology.organism_classificationCathodeAnodeChemical energyChemical engineering0210 nano-technologyBiocathodeJournal of Electroanalytical Chemistry
researchProduct

Electrochemical treatment of aqueous solutions of catechol by various electrochemical advanced oxidation processes: Effect of the process and of oper…

2017

Abstract Catechol, one of the most abundant compounds in olive mills wastewaters, which is generated in the Fenton degradation of various aromatic compounds, is a toxic, possible carcinogen, persistent pollutant and it is not readily biodegradable. Hence, its degradation requires the utilization of advanced oxidation processes (AOPs). Here, the electrochemical treatment of aqueous solutions of catechol was investigated. The utilization of various electrochemical processes, such as electro-Fenton (EF), direct anodic oxidation (AO), indirect oxidation by electro-generated active chlorine and coupled processes was investigated. Furthermore, the effect of various operating conditions (including…

CatecholAqueous solutionChemistryGeneral Chemical EngineeringAdvanced oxidation processInorganic chemistrychemistry.chemical_element02 engineering and technology010501 environmental sciences021001 nanoscience & nanotechnologyElectrochemistry01 natural sciencesCatechol; Advanced oxidation process electro-Fenton anodic oxidation; BDDAnalytical ChemistryAnodeCatalysischemistry.chemical_compoundCatecholElectrochemistryChlorineDegradation (geology)Advanced oxidation process electro-Fenton anodic oxidation0210 nano-technologyBDD0105 earth and related environmental sciences
researchProduct

ABATEMENT OF POLLUTANTS IN WATER BY DIFFERENT ELECTROCHEMICAL APPROACHES

2015

POLLUTANTs ELECTROCHEMICAL
researchProduct

Electrochemical synthesis of C-glycosides as non-natural mimetics of biologically active oligosaccharides

2012

Natural oligosaccharides inhibitors of heparanase and selectins are emerging as promising drugs for cancer therapy. As an alternative tool to the natural ones, sulfated tri maltose C-C-linked dimers (alfa,alfa alfa,beta and beta,beta STMCs) were prepared by bromo-maltotriose electroreduction on silver cathode,1 followed by sulfation. The presence of an interglycosidic C-C bond makes STMCs less vulnerable to metabolic processing then their O-analogues. For this reason, STMCs have been studied as drug candidates and inhibitors of carbohydrate processing enzymes. Their activity as inhibitor of Pselectin in vivo and in the attenuation of metastasis both on B16-BL6 melanoma cells and on MC- 38 c…

Electrochemical synthesis C-glycosides
researchProduct

Special applications of reverse electrodialysis

2016

Reverse electrodialysis (RED) is a process for direct electricity production from salinity gradients, based on the use of suitable exchange membranes. To develop the RED process on an applicative scale and to add value to the overall process, a key role is entrusted to the selection of electrodic system, redox species, and electrode materials. In particular, it was shown that a proper selection of redox processes allows the use of a RED cell for the wastewater treatment of organic and inorganic pollutants resistant to conventional biological methods and for the synthesis of chemicals without energy supply. The utilization of microbial reverse electrodialysis cells was also proposed to incre…

Microbial reverse electrodialysis cellElectrode materialWaste managementProduction of chemicalbusiness.industryChemistryReverse electrodialysis (RED)Redox processeTreatment of AO7 and Cr(VI)Settore ING-IND/27 - Chimica Industriale E TecnologicaRedoxEngineering (all)MembraneElectricity generationWastewaterScientific methodReversed electrodialysisSequestration of CO2Sewage treatmentProcess engineeringbusiness
researchProduct

Cathodic abatement of Cr(VI) in water by microbial reverse-electrodialysis cells

2015

Abstract For the first time a microbial reverse electrodialysis cell (MRC) was used for the treatment of water contaminated by Cr(VI). It has been recently shown that both inorganic and organic pollutants can be removed by reverse electrodialysis processes (RED) using water with different salinity without the supply of electric energy. However, a high number of membrane pairs is usually necessary for the treatment of wastewater by RED. Here, it was showed that a lower number of membranes can be used by the utilization of a MRC (i.e., a RED cell with a biotic anode) for such purposes. Indeed, the abatement of Cr(VI), chosen as model pollutant, was successfully achieved by cathodic reduction …

PollutantChromatographyChemistryGeneral Chemical EngineeringInorganic chemistryContaminationAnalytical ChemistryAnodeCathodic protectionSalinityMembraneWastewaterReverse electrodialysis Microbial reverse electrodialysis Cr(VI) Salinity gradient Waste waterReversed electrodialysisElectrochemistry
researchProduct

Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery

2017

Abstract Thermally regenerative ammonia-based batteries (TRABs) have been developed to harvest low-grade waste heat as electricity. To improve the power production and anodic coulombic efficiency, the use of ethylenediamine as an alternative ligand to ammonia was explored here. The power density of the ethylenediamine-based battery (TRENB) was 85 ± 3 W m−2-electrode area with 2 M ethylenediamine, and 119 ± 4 W m−2 with 3 M ethylenediamine. This power density was 68% higher than that of TRAB. The energy density was 478 Wh m−3-anolyte, which was ∼50% higher than that produced by TRAB. The anodic coulombic efficiency of the TRENB was 77 ± 2%, which was more than twice that obtained using ammon…

Battery (electricity)Materials scienceEnergy Engineering and Power TechnologyEthylenediamine02 engineering and technology010402 general chemistry7. Clean energy01 natural scienceschemistry.chemical_compoundWaste heatElectrical and Electronic EngineeringPhysical and Theoretical ChemistryPower densityEnergy recoveryWaste managementRenewable Energy Sustainability and the Environment021001 nanoscience & nanotechnology0104 chemical sciencesSeparation processAnodeChemical engineeringchemistryLow-grade waste heat Thermally regenerative battery Ethylenediamine High power production Thermoelectrochemical systems0210 nano-technologyFaraday efficiencyJournal of Power Sources
researchProduct

Abatement of AO7 in a divided microbial fuel cells by sequential cathodic and anodic treatment powered by different microorganisms

2017

Abstract Microbial fuel cells (MFCs) can allow the treatment of organic pollutants resistant to conventional biological processes by electro-Fenton (EF) process performed in the cathodic compartment. However, EF usually results in a partial mineralization of pollutants. Here, we have studied the possible treatment of such organics in a MFC by a sequential cathodic and anodic treatment. In particular, the treatment of an aqueous solution of Acid Orange (AO7), a largely used azoic dye resistant to conventional biological processes, was performed in the cathodic compartment of a divided MFC by EF. The process allowed the total removal of the color and the partial removal of the TOC, due mainly…

Microbial fuel cellAO7MFCGeneral Chemical EngineeringMicroorganism02 engineering and technology010501 environmental sciencesShewanella putrefaciensSettore BIO/19 - Microbiologia Generale01 natural sciencesAnalytical ChemistryCathodic protectionElectrochemistryChemical Engineering (all)Shewanella putrefacienSequential cathodic and anodic treatmentEffluentGeobacter sulfurreducens0105 earth and related environmental sciencesPollutantAqueous solutionbiologyChemistrySettore ING-IND/27 - Chimica Industriale E Tecnologica021001 nanoscience & nanotechnologybiology.organism_classificationEnvironmental chemistryGeobacter sulfurreducenInsect gut microbiota0210 nano-technologyJournal of Electroanalytical Chemistry
researchProduct

ABATEMENT OF ACID ORANGE 7 IN WATER BY DIFFERENT ELECTROCHEMICAL APPROACHES

2014

Very large amounts of synthetic dyes are discharged in the environment from industrial effluents [1]. Due to their large-scale production and extensive application, synthetic dyes can cause considerable nonaesthetic pollution and are serious health-risk factors [2]. Dyes are commonly classified from their chromophore group. The majority of these compounds consumed at industrial scale are azo (–N=N–) derivatives that represent more than 50% of the all dyes used in textile industries, although antraquinone, indigoide, triphenylmethyl, xanthene, sulphur and phtalocyanine derivatives are frequently utilized [3]. Since dyes usually present high stability under sunlight and resistance to microbia…

microfluidic reactors reverse electrodialysis cells microbial fuel cells
researchProduct

The influence of sludge retention time on mixed culture microbial fuel cell start-ups

2017

Abstract In this work, the start-ups of air-cathode microbial fuel cells (MFCs) seeds with conventional activated sludge cultivated at different solid retention times (SRTs) are compared. A clear influence of the SRT of the inoculum was observed, corresponding to an SRT of 10 days to the higher current density exerted, about 0.2 A m −2 . This observation points out that, in this type of electrochemical device, it is recommended to use high SRT seeds. The work also points out that in order to promote an efficient start-up, it is not only necessary to use high SRT seeds, but also to feed a high COD concentration. When feeding 10,000 ppm COD and keeping SRT of 10 d differences of current densi…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciEnvironmental EngineeringMicrobial fuel cellMicrobial fuel cellAir-cathodeBiomedical EngineeringBioengineering02 engineering and technology010501 environmental sciencesSolid retention time Microbial fuel cell Air-cathode Acetate01 natural sciencesMixed culture0105 earth and related environmental sciencesSolid retention timChemistryAir cathodeAcetateEnvironmental engineeringSettore ING-IND/27 - Chimica Industriale E Tecnologica021001 nanoscience & nanotechnologyPulp and paper industryStart upSolid retention time Microbial fuel cell Air-cathode AcetateActivated sludge0210 nano-technologyRetention timehuman activitiesBiotechnology
researchProduct

ABATEMENT OF POLLUTANTS IN AQUEOUS SOLUTIONS BY REVERSE ELECTRODIALYSIS PROCESSES

2013

Electrochemistry-based technologies are very promising methods for treating wastewaters containing organic and inorganic pollutants that are either resistant to biological processes or toxic for microorganisms [1]. On the other hand, in the reverse electrodialysis (RED), the electrical energy is directly extracted from chemical potential gradients arising from salinity differences [2], especially between brine solution and sea water. RED can be potentially used for the simultaneous generation of electrical energy and the treatment of waters contaminated by recalcitrant pollutants. The advantages of using the RED process for such dual purpose are: the utilization of a green reagent such as t…

REVERSE ELECTRODIALYSIS ABATEMENT OF POLLUTANTS
researchProduct

ELECTROCHEMICAL TREATMENT OF WASTE WATERS CONTAMINATED BY ORGANIC POLLUTANTS: A LOOK ON SOME NEW APPROACHES

2012

Recent researches have demonstrated that electrochemical methods offer an attractive alternative to traditional routes for treating wastewaters containing toxic or/and refractory organic pollutants. These methods use a clean reagent, as the electron, very mild operative conditions (ambient temperature and pressure) and can be run with limited operative costs. Despite of the above mentioned advantages, electrochemical processes present some important disadvantages such as: • the cost of some electrodic materials such as silver (for reduction processes) and boron doped diamond (for oxidation ones). On the other hand, the cost of silver based electrodic materials can be considerably lowered by…

ELECTROCHEMICAL TREATMENT WASTE WATERS ORGANIC POLLUTANTS
researchProduct

Reverse electrodialysis performed at pilot plant scale: Evaluation of redox processes and simultaneous generation of electric energy and treatment of…

2017

Abstract This paper describes the experimental campaign carried out with a reverse electrodialysis (RED) demonstration plant (Marsala, Italy) with the main aims of: (i) evaluating the effect of various operating parameters, including the redox processes, on the system performances; (ii) using the plant for the simultaneous generation of electric energy and treatment of wastewater. The prototype (44 × 44 cm2, 500 cell pairs) was tested using both real (brackish water and brine) and artificial solutions. Tests with two different electrode rinse solutions (with or without iron redox couples) were performed. In agreement with the data obtained in the laboratory, the presence of iron ions contri…

Environmental Engineering02 engineering and technologyWastewater treatment010501 environmental sciencesWastewater01 natural sciencesRedoxWaste Disposal FluidElectricityReversed electrodialysisOsmotic powerSalinity gradient powerElectrodesWaste Management and Disposal0105 earth and related environmental sciencesCivil and Structural EngineeringIon exchange membraneWater Science and TechnologyPollutantPilot plantChemistryEcological ModelingEnvironmental engineering021001 nanoscience & nanotechnologyREDPollutionBrinePilot plantWastewaterItalySewage treatment0210 nano-technologyDialysisOxidation-Reduction
researchProduct

REVERSE ELECTRODIALYSIS PROCESSES FOR THE PRODUCTION OF CHEMICALS AND THE TREATMENT OF CONTAMINATED WASTEWATER

REVERSE ELECTRODIALYSIS PROCESSES TREATMENT OF CONTAMINATED WASTEWATER MICROBIAL FUEL CELL MICROBIAL REVERSE ELECTRODIALYSIS CELL
researchProduct

Cathodic reduction of hexavalent chromium coupled with electricity generation achieved by reverse-electrodialysis processes using salinity gradients

2014

Abstract A new approach for the simultaneous generation of electric energy and the treatment of waters contaminated by recalcitrant pollutants using salinity gradients was proposed. Reverse electrodialysis allows for the generation of electric energy from salinity gradients. Indeed, the utilization of different salt concentrations gives a potential difference between the electrodes which allows the generation of electric energy by using suitable electrolytes and an external circuit. The simultaneous generation of electric energy and the treatment of waters contaminated by Cr(VI) was successfully achieved for the first time by reverse electrodialysis processes using salinity gradients and pr…

Cr(VI)ChemistrySupporting electrolyteGeneral Chemical EngineeringElectrolytesalinity gradientVolumetric flow rateSalinitychemistry.chemical_compoundElectricity generationChemical engineeringStack (abstract data type)Waste water treatmentenergy generationEnvironmental chemistryReversed electrodialysisElectrochemistryreverse electrodialisyHexavalent chromium
researchProduct