0000000001056055
AUTHOR
A Facchetti
High pentacene transistor performance by engeneering morphology of solution processed thin films
Poly(naphthalenediimidequaterthiophene):Poly(hexyilthiophene) Heterojunctions. Efficient Polymer-to-Polymer Electron Transfer Interfaces
Organic thin films solar cells and plastic solar cells [1] have attracted the attention of the scientific community especially as regards the performance of new conjugated polymers including their interfaces [2-4]. In this work, poly(naphthalenediimidequaterthiophene) (PNDIT4) and poly(hexyilthiophene) (P3HT) have been employed, for the first time, for engineering planar and bulk heterojunctions by the synergetic use of two techniques: electropolymerization and layer by layer deposition. Electropolymerization has been used for obtaining PNDIT4 thin films on transparent ITO/PET electrodes, starting from the synthesized monomer. Inverse Langmuir-Schaefer technique has been employed for deposi…
Monolayer and multilayer field-effect transistors based on a high-mobility n-type polymer: effect of the polymeric texture on charge transport
ELECTROCHROMIC PERFORMANCE OF A NOVEL POLY(NAPHTHALENEDIIMIDEQUATERTHIOPHENE)
Conjugated polymers (CP) display several interesting properties which enable them their application in different fields such as solar cells, light emitting diodes, field effect transistors, electrochromic devices to cite a few. One of the most interesting properties of this class of materials is their ability of switching from a conductive to an insulating state and vice versa by changing their redox state. The possibility to switch from an oxidized to a neutral or reduced state induces variations of the optical spectrum due to changes in the electron excitation energy configuration resulting in electrochromism. Nowadays, electrochromic conjugated polymers are stimulating the development of…