0000000001056425

AUTHOR

Stéphane Bordas

Parameter identification problem in bimaterial human skin and sensitivity analysis : Uncertainties in biomechanics of skin

International audience; The proposed paper concerns the prediction of the numerical response of a biomechanical structure submitted to an unknown external loading state. The methodology is based on homogeneous and then heterogeneous structures such as healthy or pathological cutaneous tissues that can be mechanically tested in vivo under a patchy knowledge of boundary conditions. Experimental data corresponding to the extension of a piece of skin located between two pads with displacement enslavement, represent input data to the numerical model. Data are reaction force on one pad and displacement field between the two pads and all around. The numerical model consists of a representation of …

research product

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

International audience; The human skin behaves as an elastic membrane initially prestressed but not uniformly. The presence of anatomical sites favorable to the appearance of some tumors, a keloid in our case, while other sites never develop them attests to the importance of the mechanical environment of the tissue. Thus, a mechanical characterization of the tumored skin is necessary to understand the keloid expansion from a mechanical point of view. Our case study consists in modeling a bi-material structure composed of a keloid skin surrounded by healthy skin located on upper left arm of a young female. From the experimental measurements in vivo, by combining force sensor, displacement se…

research product

Modelling Keloids Dynamics: A Brief Review and New Mathematical Perspectives

The keloids are fibroproliferative disorders described by an excessive growth of fibrotic tissue, which also invades adjacent areas (beyond the original wound borders). Since these disorders are specific to humans (no other animal species naturally develop keloid-like tissue), the experimental in vivo/in vitro research has not lead to significant advances in this field. One possible approach could be to combine in vitro human models with calibrated in silico mathematical approaches (i.e., models and simulations) to generate new testable biological hypotheses related to biological mechanisms and improved treatments. Since these combined approaches do not really exist for keloid disorders, in…

research product