0000000001057168

AUTHOR

Antonio M. López

showing 2 related works from this author

Thermal sensor based on a polymer nanofilm

2016

In this work, we have developed a thermal sensor based on poly(3,4 ethylenedioxythiophene) (PEDOT) nanofilms as thermoelectric material. The PEDOT nanofilms have been synthesized by the electrochemical polymerization method. The thicknesses of the films were around 120 nm. The doping level of PEDOT was controlled by chemical reduction using hydrazine. The achieved Seebeck coeficient is 40 uV/K. A PEDOT nanofilm was integrated into an electronic circuit that amplifies the voltage originated from the Seebeck effect. The temperature increment produced by a fingerprint touching the film is enough to switch on a light emitting diode. Peer Reviewed

Conductive polymersMaterials scienceThin films02 engineering and technology010402 general chemistry01 natural scienceslaw.invention:Enginyeria electrònica::Instrumentació i mesura::Sensors i actuadors [Àrees temàtiques de la UPC]PEDOT:PSSlawSeebeck coefficientThermoelectric effectSensors electroquímicsPolímers conductorsElectrical and Electronic EngineeringThin filmInstrumentationConductive polymerPel·lícules finesbusiness.industryThermoelectricDopingMetals and AlloysThermoelectricity021001 nanoscience & nanotechnologyCondensed Matter PhysicsThermoelectric materials:Energies::Termoenergètica [Àrees temàtiques de la UPC]0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOptoelectronicsTermoelectricitat0210 nano-technologybusinessLight-emitting diodeThermal sensors
researchProduct

Confident methods for the evaluation of the hydrogen content in nanoporous carbon microfibers

2012

Abstract Nanoporous carbon microfibers were grown by chemical vapor deposition in the vapor-liquid solid mode using different fluid hydrocarbons as precursors in different proportions. The as-grown samples were further treated in argon and hydrogen atmospheres at different pressure conditions and annealed at several temperatures in order to deduce the best conditions for the incorporation and re-incorporation of hydrogen into the microfibers through the nanopores. Since there are some discrepancies in the results on the hydrogen content obtained under vacuum conditions, in this work, we have measured the hydrogen content in the microfibers using several analytical methods in ambient conditi…

ArgonMaterials sciencebusiness.product_categoryNano ExpressHydrogenRaman dispersionchemistry.chemical_elementNanochemistryNanotechnologyChemical vapor depositionCondensed Matter PhysicsNanoporous materialsSurface tensionsymbols.namesakeNanoporeMaterials Science(all)chemistryChemical engineeringMicrofibersymbolsChemical vapor depositionGeneral Materials SciencePhysics::Atomic PhysicsbusinessRaman spectroscopy
researchProduct