0000000001058257

AUTHOR

M Puerrer

Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube

[EN] Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the out¿ow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCub…

research product

Search for High-energy Neutrinos from Gravitational Wave Event GW151226 and Candidate LVT151012 with ANTARES and IceCube

[EN] The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by ANTARES, within +/- 500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission …

research product

Search for eccentric binary black hole mergers with advanced LIGO and advanced Virgo during their first and second observing runs

When formed through dynamical interactions, stellar-mass binary black holes may retain eccentric orbits ($e>0.1$ at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically-formed binaries from isolated binary black hole mergers. Current template-based gravitational-wave searches do not use waveform models associated to eccentric orbits, rendering the search less efficient to eccentric binary systems. Here we present results of a search for binary black hole mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. The search uses min…

research product

Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run

We present a search for subsolar mass ultracompact objects in data obtained during Advanced LIGO’s second observing run. In contrast to a previous search of Advanced LIGO data from the first observing run, this search includes the effects of component spin on the gravitational waveform. We identify no viable gravitational-wave candidates consistent with subsolar mass ultracompact binaries with at least one component between \ud0.2\ud \ud \udM\ud⊙\ud–\ud1.0\ud \ud \udM\ud⊙\ud. We use the null result to constrain the binary merger rate of (\ud0.2\ud \ud \udM\ud⊙\ud, \ud0.2\ud \ud \udM\ud⊙\ud) binaries to be less than \ud3.7\ud×\ud10\ud5\ud \ud \udGpc\ud−\ud3\ud \udyr\ud−\ud1\udand the binary …

research product

Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anticoincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is $5.0\times 10^{-8}$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short gamma-ray bursts. We use the ob…

research product