Mathematical and numerical analysis of initial boundary valueproblem for a linear nonlocal equation
We propose and study a numerical scheme for bounded distributional solutions of the initial boundary value problem for the anomalous diffusion equation ∂t u +Lμu = 0 in a bounded domain supplemented with inhomogeneous boundary conditions. Here Lμ is a class of nonlocal operators including fractional Laplacian. ⃝c 2019 InternationalAssociation forMathematics andComputers in Simulation (IMACS). Published by ElsevierB.V.All rights reserved.
Models of the population playing the Rock-Paper-Scissors game
We consider discrete dynamical systems coming from the models of evolution of populations playing rock - paper - scissors game . Asymptotic behaviour of trajectories of these systems is described, occurrence of the Neimark-Sacker bifurcation and nonexistence of time averages are proved.