0000000001059417
AUTHOR
V. M. Helenius
Circular and linear dichroism of aggregates of chlorophyll a and chlorophyll b in 3-methylpentane and paraffin oil.
A circular (CD) and linear dichroism (LD) study of the water adducts of the green plant chlorophylls a (Chl a) and b (Chl b) in hydrocarbon solvents 3-methylpentane and paraffin oil is presented. A strong red shift of the Qy-absorption band from 663 to 746 nm (1678 cm−1) is observed as the water adduct of Chl a is formed. The Chl a-water adduct shows a strong, nonconservative CD signal, which is characterized by a positive peak at 748 nm and two negative peaks at 720 and 771 nm. The maximum CD (AL - AR) is only one order of magnitude smaller than the isotropic absorption maximum. We propose that this exceptionally strong signal is the so-called psi-type CD. The LD spectrum was measured in a…
Exciton Interactions and Femtosecond Relaxation in Chlorophyll a−Water and Chlorophyll a−Dioxane Aggregates
Chlorophyll a (Chl a) in hydrocarbon solution with a small amount of dioxane or water shows red-shifted absorption bands at 686 nm and at 700 nm (dioxane) and at 745 nm (water), indicative of self-organized aggregate structures in solution. To study the relationship between the structure and spectral properties of the aggregates, several one-dimensional model structures of Chl a−dioxane and Chl a−water aggregates were computed by the molecular mechanics method. Three overall structures ranging from stick to a ring shape were energetically favored for the dioxane system. All these structures contain structural heterogeneity that consists of repeating dimers that further form tetramer substru…
Electronic States, Absorption Spectrum and Circular Dichroism Spectrum of the Photosynthetic Bacterial LH2 Antenna of Rhodopseudomonas acidophila as Predicted by Exciton Theory and Semiempirical Calculations
A new approach that uses a combination of semiempirical configuration interaction method and exciton theory to calculate electronic energies, eigenstates, absorption spectrum and circular dichroism (CD) spectrum of the LH2 antenna of Rhodopseudomonas acidophila is introduced. A statistical simulation that uses experimental homogeneous line widths was used to account for the inhomogeneous line width of the observed spectrum. Including the effect of orbital overlap of the close-lying pigments of the B850 ring and the effect of the pigment protein interaction in the B800 ring allowed a successful simulation of the experimental absorption and CD spectra of the antenna at room temperature. Two e…