0000000001059800

AUTHOR

X. De La Broise

showing 6 related works from this author

Large bulk Micromegas detectors for TPC applications

2009

A large volume TPC will be used in the near future in a variety of experiments including T2K. The bulk Micromegas detector for this TPC is built using a novel production technique particularly suited for compact, thin and robust low mass detectors. The capability to pave a large Surface with a simple mounting Solution and small dead space is of particular interest for these applications. We have built several large bulk Micromegas detectors (36 x 34 cm(2)) and we have tested one in the former HARP field cage with a magnetic field. Prototypes cards of the T2K front end electronics, based on the AFTER ASIC chip, have been used in this TPC test for the first time. Cosmic ray data have been acq…

T2KPhysicsNuclear and High Energy PhysicsEnergy lossField (physics)Physics::Instrumentation and Detectorsbusiness.industryDetectorMicroMegas detectorCosmic rayNuclear physicsOpticsApplication-specific integrated circuitPoint (geometry)TPCbusinessInstrumentationMicromegasHARPNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

CESAR: Cryogenic Electronics for Space Applications

2013

Ultra-low temperature sensors provide unprecedented performances in X-ray and far infrared astronomy by taking advantage of physical properties of matter close to absolute zero. CESAR is an FP7 funded project started in December 2010, that gathers six European laboratories around the development of high performances cryogenic electronics. The goal of the project is to provide far-IR, X-ray and magnetic sensors with signal-processing capabilities at the heart of the detectors. We present the major steps that constitute the CESAR work, and the main results achieved so far.

Far-infrared bolometersHEMTSNanotechnologyFar-infrared astronomySpace (mathematics)01 natural sciences030218 nuclear medicine & medical imagingNOISE03 medical and health sciencesCryogenic electronics0302 clinical medicineDevelopment (topology)Settore FIS/05 - Astronomia E Astrofisica0103 physical sciencesHigh impedance detectorsGeneral Materials ScienceElectronics4.2 KVOLTAGEAerospace engineering010302 applied physicsPhysicsbusiness.industryDetectorX-ray microcalorimetersCondensed Matter PhysicsAtomic and Molecular Physics and OpticsCryogenic electronics · High impedance detectors · X-ray microcalorimeters · Far-infrared bolometers1 KHZ[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]business
researchProduct

Bulk micromegas detectors for large TPC applications

2007

A large volume TPC will be used in the near future in a variety of experiments including T2K. The bulk Micromegas detector for this TPC is built using a novel production technique particularly suited for compact and robust low mass detectors. The capability to pave a large surface with a simple mounting solution and small dead space between modules is of particular interest for these applications. We have buil t several large bulk Micromegas detectors (27x26 cm 2 ) and we have tested them in the former HARP field cage setup wit h a magnetic field. Cosmic ray data have been acquired in a variet y of experimental conditions. Good detector performances and space point resolution have been achi…

Nuclear and High Energy PhysicsField (physics)Physics::Instrumentation and DetectorsCosmic rayddc:500.27. Clean energy01 natural sciencesNuclear physicsOptics0103 physical sciencesPoint (geometry)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physics29.40.Cs; 29.40.GxInstrumentationHARPPhysics010308 nuclear & particles physicsbusiness.industryDetectorFísicaMicroMegas detectorMagnetic fieldTPCbusinessMicromegas
researchProduct

Time projection chambers for the T2K near detectors

2011

The T2K experiment is designed to study neutrino oscillation properties by directing a high intensity neutrino beam produced at J-PARC in Tokai, Japan, towards the large Super-Kamiokande detector located 295 km away, in Kamioka, Japan. The experiment includes a sophisticated near detector complex, 280 m downstream of the neutrino production target in order to measure the properties of the neutrino beam and to better understand neutrino interactions at the energy scale below a few GeV. A key element of the near detectors is the ND280 tracker, consisting of two active scintillator–bar target systems surrounded by three large time projection chambers (TPCs) for charged particle tracking. The d…

Nuclear and High Energy PhysicsNeutrino oscillationPhysics::Instrumentation and Detectorsddc:500.2Tracking (particle physics)01 natural sciences7. Clean energyNuclear physics0103 physical sciences010306 general physicsNeutrino oscillationInstrumentationPhysicsTime projection chamber010308 nuclear & particles physicsDetectorT2K experimentDrift chamber Gas system Micromegas Neutrino oscillation Time projection chamberFísicaMicroMegas detectorTime projectionchamberGas systemCharged particleTime projection chamberDrift chamberHigh Energy Physics::ExperimentNeutrinoMicromegas
researchProduct

The T2K Experiment

2011

The T2K experiment is a long-baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle {\theta}_{13} by observing {\nu}_e appearance in a {\nu}_{\mu} beam. It also aims to make a precision measurement of the known oscillation parameters, {\Delta}m^{2}_{23} and sin^{2} 2{\theta}_{23}, via {\nu}_{\mu} disappearance studies. Other goals of the experiment include various neutrino cross section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande)…

Nuclear and High Energy PhysicsParticle physicsSterile neutrinoPhysics - Instrumentation and DetectorsNeutrino oscillationPhysics::Instrumentation and Detectorsddc:500.27. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Long baseline[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrinos010306 general physicsNeutrino oscillationphysics.ins-detInstrumentationQCPhysicsT2Khep-ex010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyT2K experimentNeutrinos; Neutrino oscillation; Long baseline; T2K; J-PARC; Super-KamiokandeFísicaNeutrino detectorJ-PARCHigh Energy Physics::ExperimentJ-PARCSuper-KamiokandeNeutrinoSuper-KamiokandeLepton
researchProduct

Search for Diphoton Events with Large Missing Transverse Energy with 36 pb^-1 of 7 TeV Proton-Proton Collision Data with the ATLAS Detector

2011

Making use of 36 pb^-1 of proton-proton collision data at sqrt{s} = 7 TeV, the ATLAS Collaboration has performed a search for diphoton events with large missing transverse energy. Observing no excess of events above the Standard Model prediction, a 95% Confidence Level (CL) upper limit is set on the cross section for new physics of sigma < 0.38 - 0.65 pb in the context of a generalised model of gauge mediated supersymmetry breaking (GGM) with a bino-like lightest neutralino, and of sigma < 0.18 - 0.23 pb in the context of a specific model with one universal extra dimension (UED). A 95 % CL lower limit of 560 GeV, for bino masses above 50 GeV, is set on the GGM gluino mass, while a low…

Physics and Astronomy (miscellaneous)Physics beyond the Standard ModelParticleProton–proton collision01 natural sciencesHigh Energy Physics - ExperimentUniversal extra dimensionHigh Energy Physics - Experiment (hep-ex)Diphoton eventsExtension[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentPhysicsCompactification (physics)Settore FIS/01 - Fisica SperimentaleSigmaSupersymmetryATLASTransverse planePhysical SciencesDynamical Supersymmetry BreakingUniversal Extra DimensionsFísica nuclearPhenomenologyLHCPhenomenology (particle physics)Particle Physics - ExperimentParticle physicsFortran CodeSupergauge TransformationsFOS: Physical sciencesproton–proton collision; ATLAS detectorddc:500.25300103 physical sciencesFysikddc:530High Energy Physics010306 general physicsEngineering (miscellaneous)Ciencias Exactas010308 nuclear & particles physicsFísicaCollisionHadron CollidersGeneratorsCol·lisions (Física nuclear)High Energy Physics::ExperimentSupersymmetryModel
researchProduct