0000000001060871

AUTHOR

Udayan B. Darji

Linear dynamics induced by odometers

Weighted shifts are an important concrete class of operators in linear dynamics. In particular, they are an essential tool in distinguishing variety dynamical properties. Recently, a systematic study of dynamical properties of composition operators on $L^p$ spaces has been initiated. This class of operators includes weighted shifts and also allows flexibility in construction of other concrete examples. In this article, we study one such concrete class of operators, namely composition operators induced by measures on odometers. In particular, we study measures on odometers which induce mixing and transitive linear operators on $L^p$ spaces.

research product

Lineability of non-differentiable Pettis primitives

Let \(X\) be an infinite-dimensional Banach space. In 1995, settling a long outstanding problem of Pettis, Dilworth and Girardi constructed an \(X\)-valued Pettis integrable function on \([0,1]\) whose primitive is nowhere weakly differentiable. Using their technique and some new ideas we show that \(\mathbf{ND}\), the set of strongly measurable Pettis integrable functions with nowhere weakly differentiable primitives, is lineable, i.e., there is an infinite dimensional vector space whose nonzero vectors belong to \(\mathbf{ND}\).

research product

Rolewicz-type chaotic operators

In this article we introduce a new class of Rolewicz-type operators in l_p, $1 \le p < \infty$. We exhibit a collection F of cardinality continuum of operators of this type which are chaotic and remain so under almost all finite linear combinations, provided that the linear combination has sufficiently large norm. As a corollary to our main result we also obtain that there exists a countable collection of such operators whose all finite linear combinations are chaotic provided that they have sufficiently large norm.

research product