0000000001061425
AUTHOR
R. Schwengner
Measurement of the H2(p,γ)He3 S factor at 265–1094 keV
Recent astronomical data have provided the primordial deuterium abundance with percent precision. As a result, big bang nucleosynthesis may provide a constraint on the universal baryon to photon ratio that is as precise as, but independent from, analyses of the cosmic microwave background. However, such a constraint requires that the nuclear reaction rates governing the production and destruction of primordial deuterium are sufficiently well known. Here, a new measurement of the 2H(p,γ)3He cross-section is reported. This nuclear reaction dominates the error on the predicted big bang deuterium abundance. A proton beam of 400–1650 keV beam energy was incident on solid titanium deuteride targe…
Very high rotational frequencies and band termination in 73Br
Rotational bands in 73Br have been investigated up to spins of 65/2 using the EUROBALL III spectrometer. One of the negative-parity bands displays the highest rotational frequency 1.85 MeV reported to date in nuclei with mass number greater than 25. At high frequencies, the experimental dynamic moment of inertia for all bands decrease to very low values, indicating a loss of collectivity. The bands are described in the configuration-dependent cranked Nilsson-Strutinsky model. The calculations indicate that one of the negative-parity bands is observed up to its terminating single-particle state at spin 63/2. This result establishes the first band termination case in the A = 70 mass region.
Very high rotational frequencies and band termination in 73Br
Rotational bands in 73Br have been investigated up to spins of 65/2 using the EUROBALL III spectrometer. One of the negative-parity bands displays the highest rotational frequency 1.85 MeV reported to date in nuclei with mass number greater than 25. At high frequencies, the experimental dynamic moment of inertia for all bands decrease to very low values, indicating a loss of collectivity. The bands are described in the configuration-dependent cranked Nilsson-Strutinsky model. The calculations indicate that one of the negative-parity bands is observed up to its terminating single-particle state at spin 63/2. This result establishes the first band termination case in the A = 70 mass region.