0000000001061566

AUTHOR

Emmi Pohjolainen

showing 8 related works from this author

Covalent and non-covalent coupling of a Au102 nanocluster with a fluorophore: energy transfer, quenching and intracellular pH sensing

2021

Interactions between an atomically precise gold nanocluster Au102(p-MBA)44 (p-MBA = para mercaptobenzoic acid) and a fluorescent organic dye molecule (KU, azadioxatriangulenium) are studied. In solution, the constituents form spontaneously a weakly bound complex leading to quenching of fluorescence of the KU dye via energy transfer. The KU can be separated from the complex by lowering pH, leading to recovery of fluorescence, which forms a basis for an optical reversible pH sensor. However, the sensor is not a stable entity, which could be delivered inside cells. For this purpose, a covalently bound hybrid is synthesized by linking the KU dye to the ligand layer of the cluster via an ester b…

Quenching (fluorescence)FluorophoreChemistryLigandIntracellular pHGeneral EngineeringBioengineering02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesFluorescenceAtomic and Molecular Physics and Optics0104 chemical sciencesNanoclusterschemistry.chemical_compoundCovalent bondMoleculeGeneral Materials Science0210 nano-technologyNanoscale Advances
researchProduct

A Unified AMBER-Compatible Molecular Mechanics Force Field for Thiolate-Protected Gold Nanoclusters.

2016

We present transferable AMBER-compatible force field parameters for thiolate-protected gold nanoclusters. Five different sized clusters containing both organo-soluble and water-soluble thiolate ligands served as test systems in MD simulations, and parameters were validated against DFT and experimental results. The cluster geometries remain intact during the MD simulations in various solvents, and structural fluctuations and energetics showed agreement with DFT calculations. Experimental diffusion coefficients and crystal structures were also reproduced with sufficient accuracy. The presented parameter set contains the minimum number of cluster-specific parameters enabling the use of these p…

ta114Chemistrythiolate ligands02 engineering and technologyCrystal structure010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesMolecular mechanicsForce field (chemistry)0104 chemical sciencesComputer Science ApplicationsNanoclustersComputational chemistryChemical physicsCluster (physics)Physical and Theoretical Chemistry0210 nano-technologyta116gold nanoclustersJournal of chemical theory and computation
researchProduct

Exploring Strategies for Labeling Viruses with Gold Nanoclusters through Non-equilibrium Molecular Dynamics Simulations.

2017

Biocompatible gold nanoclusters can be utilized as contrast agents in virus imaging. The labeling of viruses can be achieved noncovalently but site-specifically by linking the cluster to the hydrophobic pocket of a virus via a lipid-like pocket factor. We have estimated the binding affinities of three different pocket factors of echovirus 1 (EV1) in molecular dynamics simulations combined with non-equilibrium free-energy calculations. We have also studied the effects on binding affinities with a pocket factor linked to the Au102pMBA44 nanocluster in different protonation states. Although the absolute binding affinities are over-estimated for all the systems, the trend is in agreement with r…

0301 basic medicineStereochemistryBiomedical EngineeringPalmitic AcidPharmaceutical ScienceMetal NanoparticlesBioengineeringProtonationMolecular Dynamics SimulationLigandsAntiviral AgentsNanoclusters03 medical and health sciencesMolecular dynamicschemistry.chemical_compoundCapsidCluster (physics)Moleculeta116OxazolesBinding affinitiesEnterovirusPharmacologyOxadiazolesBinding Sitesta114labeling virusesChemistryOrganic ChemistryBiocompatible materialCrystallography030104 developmental biologyThermodynamicsnon-equilibrium molecular dynamicsGoldgold nanoclustersHydrophobic and Hydrophilic InteractionsDerivative (chemistry)BiotechnologyBioconjugate chemistry
researchProduct

Dynamic Stabilization of the Ligand-Metal Interface in Atomically Precise Gold Nanoclusters Au68 and Au144 Protected by meta-Mercaptobenzoic Acid

2017

Ligand-stabilized, atomically precise gold nanoclusters with a metal core of a uniform size of just 1–3 nm constitute an interesting class of nanomaterials with versatile possibilities for applications due to their size-dependent properties and modifiable ligand layers. The key to extending the usability of the clusters in applications is to understand the chemical bonding in the ligand layer as a function of cluster size and ligand structure. Previously, it has been shown that monodispersed gold nanoclusters, stabilized by meta-mercaptobenzoic acid (m-MBA or 3-MBA) ligands and with sizes of 68–144 gold atoms, show ambient stability. Here we show that a combination of nuclear magnetic reson…

carboxylic acidsspectroscopyGeneral Physics and AstronomyInfrared spectroscopyNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesNanoclustersNanomaterialsMetalMolecular dynamicsNMR spectroscopyGeneral Materials Scienceclustersta116thiolsta114LigandChemistryGeneral Engineeringgold021001 nanoscience & nanotechnologymolecular dynamicsvibrational spectroscopy0104 chemical sciencesCrystallographyChemical bondgold nanoclustervisual_artvisual_art.visual_art_mediumDensity functional theory0210 nano-technologyACS Nano
researchProduct

The Role of the Anchor Atom in the Ligand of the Monolayer-Protected Au25(XR)18– Nanocluster

2015

We present a density functional theory (DFT) investigation on the role of the anchor atom and ligand on the structural, electronic, and optical properties of the anionic Au25(XR)18– nanocluster (X = S, Se, Te; R = H, CH3, and (CH2)2Ph). Substituting the anchor atom with other group 16 elements induces subtle changes in the Au–Au and Au–X bond lengths and polarization of the covalent bond. The changes in the electronic structure based on substituting both the anchor and R groups are presented through careful analysis of the density of states and theoretical determined optical spectra. We give a detailed side-by-side comparison into the structural, electronic, and optical properties of Au25(X…

ta114LigandChemistryligandsElectronic structureanchor atomsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBond lengthCrystallographyGeneral EnergyCovalent bondComputational chemistryAtomMonolayerDensity of statesDensity functional theoryPhysical and Theoretical Chemistryta116gold nanoclustersJournal of Physical Chemistry C
researchProduct

Covalent and non-covalent coupling of a Au102 nanocluster with a fluorophore : energy transfer, quenching and intracellular pH sensing

2021

Interactions between an atomically precise gold nanocluster Au102(p-MBA)44 (p-MBA = para mercaptobenzoic acid) and a fluorescent organic dye molecule (KU, azadioxatriangulenium) are studied. In solution, the constituents form spontaneously a weakly bound complex leading to quenching of fluorescence of the KU dye via energy transfer. The KU can be separated from the complex by lowering pH, leading to recovery of fluorescence, which forms a basis for an optical reversible pH sensor. However, the sensor is not a stable entity, which could be delivered inside cells. For this purpose, a covalently bound hybrid is synthesized by linking the KU dye to the ligand layer of the cluster via an ester b…

kemialliset sidoksetväriaineetpHfluoresenssinanohiukkasetanturit
researchProduct

Molecular dynamics simulations of Echovirus1

2014

Covalently attaching thiol-functionalized gold nanoclusters to virus surfaces could provide new visualization method for tracking viruses with TEM [1]. This type of imaging could provide better resolution images and shed light, e.g., on virus infection pathways [1]. The controllable binding of these nanoclusters would be essential, and this requires atomic scale information on potential binding sites. In addition atomic scale structural information on virus-nanocluster complexes and their dynamics are needed. Both types of information are potentially obtainable from an all-atom simulation. The aim of this work was to construct a valid model system and set up simulation for full Echovirus 1 …

viruksetECHO-virukset
researchProduct

Dynamic Stabilization of the Ligand-Metal Interface in Atomically Precise Gold Nanoclusters Au68 and Au144 Protected by meta-Mercaptobenzoic Acid

2017

Ligand-stabilized, atomically precise gold nanoclusters with a metal core of a uniform size of just 1-3 nm constitute an interesting class of nanomaterials with versatile possibilities for applications due to their size-dependent properties and modifiable ligand layers. The key to extending the usability of the clusters in applications is to understand the chemical bonding in the ligand layer as a function of cluster size and ligand structure. Previously, it has been shown that monodispersed gold nanoclusters, stabilized by meta-mercaptobenzoic acid (m-MBA or 3-MBA) ligands and with sizes of 68-144 gold atoms, show ambient stability. Here we show that a combination of nuclear magnetic reson…

klusteritkarboksyylihapotgold nanoclusterspektroskopiamolekyylidynamiikkaNMR-spektroskopiathiolsvibrational spectroscopykulta
researchProduct