0000000001062417

AUTHOR

Paula Pelechano Gómez

showing 3 related works from this author

Robust Resolution-Enhanced Prostate Segmentation in Magnetic Resonance and Ultrasound Images through Convolutional Neural Networks

2021

[EN] Prostate segmentations are required for an ever-increasing number of medical applications, such as image-based lesion detection, fusion-guided biopsy and focal therapies. However, obtaining accurate segmentations is laborious, requires expertise and, even then, the inter-observer variability remains high. In this paper, a robust, accurate and generalizable model for Magnetic Resonance (MR) and three-dimensional (3D) Ultrasound (US) prostate image segmentation is proposed. It uses a densenet-resnet-based Convolutional Neural Network (CNN) combined with techniques such as deep supervision, checkpoint ensembling and Neural Resolution Enhancement. The MR prostate segmentation model was tra…

Computer scienceMR prostate imagingUS prostate imagingINGENIERIA MECANICAconvolutional neural networklcsh:TechnologyConvolutional neural network030218 nuclear medicine & medical imaginglcsh:Chemistry03 medical and health sciences0302 clinical medicinemedicineGeneral Materials Sciencelcsh:QH301-705.5Instrumentation030304 developmental biologyFluid Flow and Transfer Processes0303 health sciencesmedicine.diagnostic_testlcsh:Tbusiness.industryProcess Chemistry and TechnologyConvolutional Neural NetworksUltrasoundResolution (electron density)General EngineeringMagnetic resonance imagingPattern recognitionProstate Segmentationlcsh:QC1-999Computer Science ApplicationsNeural resolution enhancementlcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Christian ministryArtificial intelligencelcsh:Engineering (General). Civil engineering (General)Magnetic Resonance and Ultrasound Imagesbusinesslcsh:PhysicsProstate segmentationApplied Sciences
researchProduct

Optimización de la secuencia de difusión en RM 3T con modelo multifactorial IVIM en el estudio de la próstata

2017

Introducción El cáncer de próstata (caP) supone la neoplasia maligna más frecuentemente diagnosticada en el varón. Este tumor ha registrado un progresivo aumento de su incidencia en los últimos años, fundamentalmente por el amplio uso de la determinación del PSA (antígeno prostático específico en suero), el aumento de la esperanza de vida, y la existencia de más y mejores métodos diagnósticos. A pesar del aumento de su incidencia, actualmente muchos pacientes se consiguen diagnosticar en estadios iniciales de la enfermedad cuando el tumor está localizado y se pueden beneficiar de un aumento en las posibilidades de curación. Además, los avances en los tratamientos ofrecen nuevas opciones ter…

Cancer de PróstataDifusión con RMUNESCO::CIENCIAS MÉDICASResonancia Magnética616.6 - Patologia del sistema genitourinariPròstata Ressonància magnètica:CIENCIAS MÉDICAS [UNESCO]
researchProduct

Deep Learning for fully automatic detection, segmentation, and Gleason Grade estimation of prostate cancer in multiparametric Magnetic Resonance Imag…

2021

The emergence of multi-parametric magnetic resonance imaging (mpMRI) has had a profound impact on the diagnosis of prostate cancers (PCa), which is the most prevalent malignancy in males in the western world, enabling a better selection of patients for confirmation biopsy. However, analyzing these images is complex even for experts, hence opening an opportunity for computer-aided diagnosis systems to seize. This paper proposes a fully automatic system based on Deep Learning that takes a prostate mpMRI from a PCa-suspect patient and, by leveraging the Retina U-Net detection framework, locates PCa lesions, segments them, and predicts their most likely Gleason grade group (GGG). It uses 490 mp…

MaleFOS: Computer and information sciencesMultidisciplinaryDatabases FactualComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionProstateProstatic NeoplasmsFOS: Physical sciencesPhysics - Medical PhysicsDeep LearningHumansMedical Physics (physics.med-ph)Multiparametric Magnetic Resonance Imaging
researchProduct