0000000001062713
AUTHOR
Giancarlo Tamburello
First volatile inventory for Gorely volcano, Kamchatka
We report here the very first assessment of volatile flux emissions from Gorely, an actively degassing volcano in Kamchatka. Using a variety of in situ and remote sensing techniques, we determined the bulk plume concentrations of major volatiles (H2O 93.5%, CO2, 2.6%, SO2 2.2%, HCl 1.1%, HF 0.3%, H2 0.2%) and trace-halogens (Br, I), therefore estimating a total gas release of 11,000 tons·day−1 during September 2011, at which time the target was non-eruptively degassing at 900°C. Gorely is a typical arc emitter, contributing 0.3% and 1.6% of the total global fluxes from arc volcanism for CO2 and HCl, respectively. We show that Gorely's volcanic gas (H2O/SO2 43, CO2/SO2 1.2, HCl/SO2 0.5) is a…
UVolc: A software platform for measuring volcanic SO2 fluxes
We present here a novel stand-alone software platform, UVolc, for remotely sensed measurement of volcanic SO"2 emission rates. Such data are important diagnostics of activity conditions, with utility in forecasting measures. This code is made user friendly to enable volcanologists, who are not experts in the underlying physics of spectroscopy, to perform their own measurements. The program provides considerable reduction in errors and far greater operating flexibility than existing analogous code, which, unlike UVolc, can only interface with hardware no longer in manufacture. UVolc will be described here, including a presentation of data collected with this program in the field.
Preliminary results of carbon degassing in the tectonically active areas of Balkan Peninsula
The deeply derived CO2 from tectonically active areas is contributing in a significant proportion, still unquantified in detail, to CO2 Earth degassing. Several studies highlighted how in these tectonically active areas most of the CO2 is dissolved in the groundwaters circulating in the large regional aquifers hosted by the permeable formations of the active orogens. Quantifying the amount of deep CO2 dissolved into groundwater can represent a powerful tool for regional investigations, because springs are representative of their catchment area that can extend from tens to hundreds of square kilometers. In the framework of a Deep Carbon Observatory supported project, we investigated for the …
Ultraviolet Imaging of Volcanic Plumes: A New Paradigm in Volcanology
Ultraviolet imaging has been applied in volcanology over the last ten years or so. This provides considerably higher temporal and spatial resolution volcanic gas emission rate data than available previously, enabling the volcanology community to investigate a range of far faster plume degassing processes, than achievable hitherto. To date this has covered rapid oscillations in passive degassing through conduits and lava lakes, as well as puffing and explosions, facilitating exciting connections to be made for the first time between previously rather separate sub disciplines of volcanology. Firstly, there has been corroboration between geophysical and degassing datasets at ≈ 1 Hz e…
Volcanic Lakes in Africa: The VOLADA_Africa 2.0 Database, and Implications for Volcanic Hazard
Volcanic lakes pose specific hazards inherent to the presence of water: phreatic and phreatomagmatic eruptions, lahars, limnic gas bursts and dispersion of brines in the hydrological network. Here we introduce the updated, interactive and open-access database for African volcanic lakes, country by country. The previous database VOLADA (VOlcanic LAke DAta Base, Rouwet et al., Journal of Volcanology and Geothermal Research, 2014, 272, 78–97) reported 96 volcanic lakes for Africa. This number is now revised and established at 220, converting VOLADA_Africa 2.0 in the most comprehensive resource for African volcanic lakes: 81 in Uganda, 37 in Kenya, 33 in Cameroon, 28 in Madagascar, 19 in Ethiop…
First measurements of magmatic gas composition and fluxes during an eruption (October 2010) of Piton de la Fournaise hot spot volcano, La reunion island
Piton de la Fournaise (PdF), in the western Indian Ocean, is a very active hot spot basaltic volcano, with 1-2 fissure eruptions per year on average. Its magmas have been widely studied and its eruptions are well anticipated by the local seismic-geodetic monitoring network. However, no datum was yet available for its magmatic gas emissions (restricted to only eruptive phases and hardly accessible). Here we report on the first measurements of the chemical composition and mass flux of magmatic gases emitted during a PdF eruption in October 2010. Hot gases arising from different eruptive vents were remotely measured with OP-FTIR spectroscopy, using molten lava fragments as IR radiation source,…
Mafic magma feeds degassing unrest at Vulcano Island, Italy
AbstractThe benign fuming activity of dormant volcanoes is punctuated by phases of escalating degassing activity that, on some occasions, ultimately prelude to eruption. However, understanding the drivers of such unrest is complicated by complex interplay between magmatic and hydrothermal processes. Some of the most comprehensively characterised degassing unrest have recently been observed at La Fossa cone on Vulcano Island, but whether or not these episodes involve new, volatile-rich ascending magma remains debated. Here, we use volcanic gas measurements, in combination with melt inclusion information, to propose that heightened sulphur dioxide flux during the intense fall 2021 La Fossa un…
Periodic volcanic degassing behavior: The Mount Etna example
[1] In contrast to the seismic and infrasonic energy released from quiescent and erupting volcanoes, which have long been known to manifest episodes of highly periodic behavior, the spectral properties of volcanic gas flux time series remain poorly constrained, due to a previous lack of hightemporal resolution gas-sensing techniques. Here we report on SO2 flux measurements, performed on Mount Etna with a novel UV imaging technique of unprecedented sampling frequency (0.5Hz), which reveal, for the first time, a rapid periodic structure in degassing from this target. These gas flux modulations have considerable temporal variability in their characteristics and involve two period bands: 40–250…
UV camera measurements of fumarole field degassing (La Fossa crater, Vulcano Island)
Abstract The UV camera is becoming an important new tool in the armory of volcano geochemists to derive high time resolution SO2 flux measurements. Furthermore, the high camera spatial resolution is particularly useful for exploring multiple-source SO2 gas emissions, for instance the composite fumarolic systems topping most quiescent volcanoes. Here, we report on the first SO2 flux measurements from individual fumaroles of the fumarolic field of La Fossa crater (Vulcano Island, Aeolian Island), which we performed using a UV camera in two field campaigns: in November 12, 2009 and February 4, 2010. We derived ~ 0.5 Hz SO2 flux time-series finding fluxes from individual fumaroles, ranging from…
Turmoil at Turrialba volcano (Costa Rica): Degassing and eruptive behavior inferred from high-frequency gas monitoring
Eruptive activity at Turrialba volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here, we use high frequency gas monitoring to track the behavior of the volcano between 2014 and 2015, and to decipher magmatic vs. hydrothermal contributions to the eruptions. Pulses of deeply-derived CO2-rich gas (CO2/Stotal > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to two weeks before eruptions, which are accompanied…
High temporal and spatial resolution UV camera measurements at Stromboli: insights on passive SO2 gas emission, Strombolian eruptions, and puffing.
Stromboli is one of the most active volcanoes on Earth, and one of the few where passive degassing persistently coexists with the (non-passive) release of over-pressurized gas pockets during both explosions and gas puffing activity. These transient gas bursting-puffing phenomena are difficult to study by conventional spectroscopic scanning techniques (e.g., DOAS), since these have far too low temporal resolution. Here, we take advantage of the high spatial and time resolution (0.6-1 Hz) of the recently developed UV camera technique to obtain a simultaneous characterisation of all the different forms of SO2 release at Stromboli (including passive degassing, Strombolian eruptions and puffing)…
Mercury fluxes from volcanic and geothermal sources: An update
OVSICORI, IAMC-CNR We review the state of knowledge on global volcanogenic Hg emissions to the atmosphere and present new data from seven active volcanoes (Poás, Rincón de la Vieja, Turrialba, Aso, Mutnovsky, Gorely and Etna) and two geothermal fields (Las Pailas and Las Hornillas). The variability of Hg contents (c. 4-125 ng m-3) measured in gaseous emissions reflects the dynamic nature of volcanic plumes, where the abundances of volatiles are determined by the physical nature of degassing and variable air dilution. Based on our dataset and previous work, we propose that an average Hg/SO2 plume mass ratio of c. 7.8 × 10-6 (± 1.5 × 10-6; 1 SE, n = 13) is best representative of open-conduit …
. New ground-based lidar enables volcanic CO2 flux measurements
AbstractThere have been substantial advances in the ability to monitor the activity of hazardous volcanoes in recent decades. However, obtaining early warning of eruptions remains challenging, because the patterns and consequences of volcanic unrests are both complex and nonlinear. Measuring volcanic gases has long been a key aspect of volcano monitoring since these mobile fluids should reach the surface long before the magma. There has been considerable progress in methods for remote and in-situ gas sensing, but measuring the flux of volcanic CO2—the most reliable gas precursor to an eruption—has remained a challenge. Here we report on the first direct quantitative measurements of the volc…
Non-stationary nature of SO2 degassing at Etna’s North-east crater (Italy).
Investigating Etna’s long-term SO2 flux behaviour has led to important conclusions on the structure of the volcano’s magma feeding system, magma production (and degassing) rates, and causes for the excess degassing behaviour. Nonetheless, our knowledge of the short-term (timescales of seconds to a few hours) behaviour of magmatic volatiles (e.g., bubble coalescence, separate ascent and surface bursting of gas-rich bubbles) in the volcano’s upper feeding conduit system is still fragmentary, and based on indirect evidences (petrologic-textural data, observation of geophysical signals , physical modelling and laboratory experiments). In the past, direct gas flux measurements at Etna have been ta…
Pizzi Deneri Field Trips - Etna 2010-2014
Intercomparison of SO2 camera systems for imaging volcanic gas plumes
Abstract SO 2 camera systems are increasingly being used to image volcanic gas plumes. The ability to derive SO 2 emission rates directly from the acquired imagery at high time resolution allows volcanic process studies that incorporate other high time-resolution datasets. Though the general principles behind the SO 2 camera have remained the same for a number of years, recent advances in CCD technology and an improved understanding of the physics behind the measurements have driven a continuous evolution of the camera systems. Here we present an intercomparison of seven different SO 2 cameras. In the first part of the experiment, the various technical designs are compared and the advantage…
A model of degassing for Stromboli volcano
International audience; A better understanding of degassing processes at open-vent basaltic volcanoes requires collection of new datasets of H2O–CO2–SO2 volcanic gas plume compositions, which acquisition has long been hampered by technical limitations. Here, we use the MultiGAS technique to provide the best-documented record of gas plume discharges from Stromboli volcano to date. We show that Stromboli's gases are dominated by H2O (48–98 mol%; mean, 80%), and by CO2 (2–50 mol%; mean, 17%) and SO2 (0.2–14 mol%; mean, 3%). The significant temporal variability in our dataset reflects the dynamic nature of degassing process during Strombolian activity; which we explore by interpreting our gas m…
Carbon concentration increases with depth of melting in Earth’s upper mantle
Carbon in the upper mantle controls incipient melting of carbonated peridotite and so acts as a critical driver of plate tectonics. The carbon-rich melts that form control the rate of volatile outflux from the Earth’s interior, contributing to climate evolution over geological times. However, attempts to constrain the carbon concentrations of the mantle source beneath oceanic islands and continental rifts is complicated by pre-eruptive volatile loss from magmas. Here, we compile literature data on magmatic gases, as a surface expression of the pre-eruptive volatile loss, from 12 oceanic island and continental rift volcanoes. We find that the levels of carbon enrichment in magmatic gases cor…
Vulcamera: a program for measuring volcanic SO2 with UV cameras
First observations of the fumarolic gas output from a restless caldera: Implications for the current period of unrest (2005-2013) at Campi Flegrei
[1] The fumarolic gas output has not been quantified for any of the currently deforming calderas worldwide, due to the lack of suitable gas flux sensing techniques. In view of resumption of ground uplift (since 2005) and the associated variations in gas chemistry, Campi Flegrei, in southern Italy, is one of the restless calderas where gas flux observations are especially necessary. Here we report the first ever obtained estimate of the Campi Flegrei fumarolic gas output, based on a set of MultiGAS surveys (performed in 2012 and 2013) with an ad-hoc-designed measurement setup. We estimate that the current Campi Flegrei fumarolic sulphur (S) flux is low, on the order of 1.5–2.2 tons/day, sugg…
Hydrogen in the gas plume of an open-vent volcano, Mount Etna, Italy
[1] We report here on the first hydrogen determinations in the volcanic gas plume of Mount Etna, in Italy, which we obtained during periodic field surveys on the volcano's summit area with an upgraded MultiGAS. Using a specific (EZT3HYT) electrochemical sensor, we resolved H2 concentrations in the plume of 1–3 ppm above ambient (background) atmosphere and derived H2-SO2 and H2-H2O plume molar ratios of 0.002–0.044 (mean 0.013) and 0.0001–0.0042 (mean 0.0018), respectively. Taking the above H2-SO2 ratios in combination with a time-averaged SO2 flux of 1600 Gg yr−1, we evaluate that Etna contributes a time-averaged H2 flux of ∼0.65 Gg yr−1, suggesting that the volcanogenic contribution to the…
A Low-Cost Smartphone Sensor-Based UV Camera for Volcanic SO2 Emission Measurements
Recently, we reported on the development of low-cost ultraviolet (UV) cameras, based on the modification of sensors designed for the smartphone market. These units are built around modified Raspberry Pi cameras (PiCams; ≈USD 25), and usable system sensitivity was demonstrated in the UVA and UVB spectral regions, of relevance to a number of application areas. Here, we report on the first deployment of PiCam devices in one such field: UV remote sensing of sulphur dioxide emissions from volcanoes; such data provide important insights into magmatic processes and are applied in hazard assessments. In particular, we report on field trials on Mt. Etna, where the utility of these devices in quantif…
First volatile inventory for Gorely volcano, Kamchatka
[1] We report here the very first assessment of volatile flux emissions from Gorely, an actively degassing volcano in Kamchatka. Using a variety of in situ and remote sensing techniques, we determined the bulk plume concentrations of major volatiles (H2O ∼93.5%, CO2, ∼2.6%, SO2 ∼2.2%, HCl 1.1%, HF 0.3%, H20.2%) and trace-halogens (Br, I), therefore estimating a total gas release of ∼11,000 tons·day−1during September 2011, at which time the target was non-eruptively degassing at ∼900°C. Gorely is a typical arc emitter, contributing 0.3% and 1.6% of the total global fluxes from arc volcanism for CO2 and HCl, respectively. We show that Gorely's volcanic gas (H2O/SO2 ∼43, CO2/SO2 ∼1.2, HCl/SO2∼…
First determination of magma-derived gas emissions from Bromo volcano, eastern Java (Indonesia)
The composition and fluxes of volcanic gases released by persistent open-vent degassing at Bromo Volcano, east Java (Indonesia), were characterised in September 2014 from both in-situ Multi-GAS analysis and remote spectroscopic (dual UV camera) measurements of volcanic plume emissions. Our results demonstrate that Bromo volcanic gas is water-rich (H2O/SO2 ratios of 56-160) and has CO2/SO2 (4.1 +/- 0.7) and CO2/S-tot (3.2 +/- 0.7) ratios within the compositional range of other high-temperature magma-derived gases in Indonesia. H-2/H2O and H2S/SO2 ratios constrain a magmatic gas source with minimal temperature of 700 degrees C and oxygen fugacity of 10(-17)-10(-18) bars. UV camera sensing on …
Quantifying carbon dioxide flux from dormant volcanoes with low-temperature fumarolic activity: demonstration from measurements at La Soufrière, Guadeloupe and Campi Flegrei, Italy
Quantifying the flux of magma derived CO2 dissipated by fumarolic fields at dormant volcanoes is fundamental to assess their current state of hydrothermal activity and, therefore, the likelihood of a future phreatic/magmatic eruption. There is, in fact, documented evidence that gas fluxes, and CO2 flux in particular, can increase substantially during volcanic unrests and prior to eruption, due to either degassing of new ascending magma or changes in the hydrothermal system physical regime. Quantifying CO2 emissions is relatively straightforward at open-conduit volcanoes with high-temperature gas venting, which release high enough quantities of SO2 remotely measurable with UV spectroscopy an…
Steam and gas emission rate from La Soufriere volcano, Guadeloupe (Lesser Antilles): Implications for the magmatic supply during degassing unrest
Abstract Since its last magmatic eruption in 1530 AD, La Soufriere andesitic volcano in Guadeloupe has displayed intense hydrothermal activity and six phreatic eruptive crises. Here we report on the first direct quantification of gas plume emissions from its summit vents, which gradually intensified during the past 20 years. Gas fluxes were determined in March 2006 and March 2012 by measuring the horizontal and vertical distributions of volcanic gas concentrations in the air-diluted plume and scaling to the speed of plume transport. Fluxes in 2006 combine real-time measurements of volcanic H2S concentrations and plume parameters with the composition of the hot (108.5 °C) fumarolic fluid at …
Spatially resolved SO2 flux emissions from Mt Etna
We report on a systematic record of SO2 flux emissions from individual vents of Etna volcano (Sicily), which we obtained using a permanent UV camera network. Observations were carried out in summer 2014, a period encompassing two eruptive episodes of the New South East Crater (NSEC) and a fissure-fed eruption in the upper Valle del Bove. We demonstrate that our vent-resolved SO2 flux time series allow capturing shifts in activity from one vent to another and contribute to our understanding of Etna's shallow plumbing system structure. We find that the fissure eruption contributed ~50,000 t of SO2 or ~30% of the SO2 emitted by the volcano during the 5 July to 10 August eruptive interval. Acti…
Gas emissions from five volcanoes in northern Chile and implications for the volatiles budget of the Central Volcanic Zone
This study performed the first assessment of the volcanic gas output from the Central Volcanic Zone (CVZ) of northern Chile. We present the fluxes and compositions of volcanic gases (H2O, CO2, H2, HCl, HF, and HBr) from five of the most actively degassing volcanoes in this region—Lascar, Lastarria, Putana, Ollague, and San Pedro—obtained during field campaigns in 2012 and 2013. The inferred gas plume compositions for Lascar and Lastarria (CO2/Stot = 0.9–2.2; Stot/HCl = 1.4–3.4) are similar to those obtained in the Southern Volcanic Zone of Chile, suggesting uniform magmatic gas fingerprint throughout the Chilean arc. Combining these compositions with our own UV spectroscopy measurements of …
Fumarolic tremor and geochemical signals during a volcanic unrest
Fumaroles are known to generate seismic and infrasonic tremor, but this fumarolic tremor has so far received little attention. Seismic records taken near the Pisciarelli fumarole, a vigorously degassing vent of the restless Campi Flegrei volcano in Italy, reveal a fumarolesourced tremor whose amplitude has recently intensified. We use independent geochemical evidence to interpret this fumarolic tremor for the first time quantitatively. We find that the temporal increase in fumarolic tremor RSAM (real-time seismic-amplitude measurement) quantitatively correlates with increases in independent proxies of fumarole activity, including the CO2concentrations in the fumarole's atmospheric plume, th…
Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-frequency gas monitoring
Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San Jose. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high-frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO2-rich gas (CO2/S-total>4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2weeks before eruptions, which are accompanied by…
Spatio-temporal changes in degassing behavior at Stromboli volcano derived from two co-exposed SO2 camera stations
Improving volcanic gas monitoring techniques is central to better understanding open-vent, persistently degassing volcanoes. SO2 cameras are increasingly used in volcanic gas studies, but observations are commonly limited to one single camera alone viewing the volcanic plume from a specific viewing direction. Here, we report on high frequency (0.5 Hz) systematic measurements of the SO2 flux at Stromboli, covering a 1-year long observation period (June 2017-June 2018), obtained from two permanent SO2 cameras using the same automated algorithm, but imaging the plume from two different viewing directions. Our aim is to experimentally validate the robustness of automatic SO2 camera for volcano …
Escalating CO2 degassing at the Pisciarelli fumarolic system, and implications for the ongoing Campi Flegrei unrest
Abstract This short communication aims at providing an updated report on degassing activity and ground deformation variations observed during the ongoing (2012–2019) Campi Flegrei caldera unrest, with a particular focus on Pisciarelli, currently its most active fumarolic field. We show that the CO2 flux from the main Pisciarelli fumarolic vent (referred as “Soffione”) has increased by a factor > 3 since 2012, reaching in 2018–2019 levels (>600 tons/day) that are comparable to those typical of a medium-sized erupting arc volcano. A substantial widening of the degassing vents and bubbling pools, and a further increase in CO2 concentrations in ambient air (up to 6000 ppm), have also been detec…
UV camera measurements of fumarole field degassing (La Fossa crater, Vulcano Island)
Recent advances in ground-based ultraviolet remote sensing of volcanic SO2 fluxes
Measurements of volcanic SO2 emission rates have been the mainstay of remote-sensing volcanic gas geochemistry for almost four decades, and they have contributed significantly to our understanding of volcanic systems and their impact upon the atmosphere. The last ten years have brought step-change improvements in the instrumentation applied to these observations, which began with the application of miniature ultraviolet spectrometers that were deployed in scanning and traverse configurations, with differential optical absorption spectroscopy evaluation routines. This study catalogs the more recent empirical developments, including: ultraviolet cameras; wide-angle field-of-view differential …
First observations of the fumarolic gas output from a restless caldera: Implications for the current period of unrest (2005-2013) at Campi Flegrei
The fumarolic gas output has not been quantified for any of the currently deforming calderas worldwide, due to the lack of suitable gas flux sensing techniques. In view of resumption of ground uplift (since 2005) and the associated variations in gas chemistry, Campi Flegrei, in southern Italy, is one of the restless calderas where gas flux observations are especially necessary. Here we report the first ever obtained estimate of the Campi Flegrei fumarolic gas output, based on a set of MultiGAS surveys (performed in 2012 and 2013) with an ad-hoc-designed measurement setup. We estimate that the current Campi Flegrei fumarolic sulphur (S) flux is low, on the order of 1.5–2.2 tons/day, suggesti…
Volcanic CO2 tracks the incubation period of basaltic paroxysms
Description
Magmatic gas flux emissions from Gorelyi volcano, Kamchatka, and implications for volatile recycling in the NW Pacific
The Kamchatka peninsula, in the north-western part of the Pacific ’Ring of Fire’, is one of the most active volcanic realms on Earth, with 29 historically erupting volcanoes along its 700 km-long Eastern Volcanic Belt (EVB). This notwithstanding, volatile input and output fluxes along this arc sector have remained poorly characterised until very recently. We here report on the very first assessment of volatile flux emissions from Gorelyi, a large (25 km3, 1830 m high) and most active shield-like Holocene volcano located on the southern segment of the Kamchatka EVB. By combing results from a variety of in situ and remote sensing techniques (MultiGAS, filter packs, and UV camera), we determine the…
Volcanic gas monitoring of quiescent volcanoes using permanent Multi-GAS networks
The Multi-component Gas Analyzer System (Multi-GAS) has recently consolidated as a standard technique for the nearly real-time in-situ observation of major volcanogenic components (H2O, CO2, SO2, H2S,H2) in volcanic gas plumes. The Multi-GAS has been initially operated at open-vent volcanoes, where it has revealed ideal for long-term continuous observations at for instance Etna and Stromboli volcanoes in Italy, therein paving the way to the acquisition of unprecedentedly long and continuous volcanic gas time-series. We here initially review the present state of the expanding network of permanent Multi-GAS instruments, now covering about 10 volcanoes worldwide. We then specifically focus on …
Combined ground and aerial measurements resolve vent-specific gas fluxes from a multi-vent volcano
Volcanoes with multiple summit vents present a methodological challenge for determining vent-specific gas emissions. Here, using a novel approach combining multiple ultraviolet cameras with synchronous aerial measurements, we calculate vent-specific gas compositions and fluxes for Stromboli volcano. Emissions from vent areas are spatially heterogeneous in composition and emission rate, with the central vent area dominating passive emissions, despite exhibiting the least explosive behaviour. Vents exhibiting Strombolian explosions emit low to negligible passive fluxes and are CO2-dominated, even during passive degassing. We propose a model for the conduit system based on contrasting rheologi…
Rapid sensing of volcanic SO₂ fluxes using a dual ultraviolet camera system: new techniques and measurements at Southern Italian volcanoes
Volatiles carry crucial information on pre- to sin-eruptive processes at active volcanoes. Measurements of gas emission rates (crater plumes, fumaroles, diffuse soil degassing) therefore improve our understanding of degassing processes and subsurface magmatic and hydrothermal conditions, and contribute to eruption forecasting. Recent technological developments in spectroscopy have allowed, over the last 30 years, the remote sensing of magmatic volatile emissions from quiescent and erupting degassing volcanoes. These data-sets have contributed to discovering cyclic gas flux components due to periodic magma supply and replenishment in magma storage zones, and/or timescales of magma migration …
Volcanic gas emissions and degassing dynamics at Ubinas and Sabancaya volcanoes; implications for the volatile budget of the central volcanic zone
Abstract Emission of volcanic gas is thought to be the dominant process by which volatiles transit from the deep earth to the atmosphere. Volcanic gas emissions, remain poorly constrained, and volcanoes of Peru are entirely absent from the current global dataset. In Peru, Sabancaya and Ubinas volcanoes are by far the largest sources of volcanic gas. Here, we report the first measurements of the compositions and fluxes of volcanic gases emitted from these volcanoes. The measurements were acquired in November 2015. We determined an average SO 2 flux of 15.3 ± 2.3 kg s − 1 (1325-ton day − 1 ) at Sabancaya and of 11.4 ± 3.9 kg s − 1 (988-ton day − 1 ) at Ubinas using scanning ultraviolet spectr…
Vulcamera: a program for measuring volcanic SO2 using UV cameras
We report here on Vulcamera, a stand-alone program for the determination of volcanic SO2&nbsp; fluxes using ultraviolet cameras. The code enables field image acquisition and all the required post-processing operations.<br />
First simultaneous mercury and major volatiles characterization of atmospheric hydrothermal emissions at the Pisciarelli's fumarolic system (Campi Flegrei, Italy)
Abstract Hydrothermal systems with active surface expressions are important natural source of atmospheric mercury. Here we report on the first simultaneous assessment of gaseous elemental mercury (GEM) and major volatiles (H2S and CO2) fluxes from the fumarolic system of Pisciarelli, currently the most active at the Campi Flegrei caldera (CFc), Naples (Italy). This was achieved via a GPS-synchronized Lumex and MultiGAS survey which extends similar investigations reported elsewhere. GEM concentrations measured in the fumarolic emissions were consistently above background air level close to the degassing area (mean ~ 8 ± 3 ng m−3 on average) and ranged up to 12,000 ng m−3. Our data evidenced …
Ultraviolet imaging of volcanic plumes: A new paradigm in volcanology
Ultraviolet imaging has been applied in volcanology over the last ten years or so. This provides considerably higher temporal and spatial resolution volcanic gas emission rate data than available previously, enabling the volcanology community to investigate a range of far faster plume degassing processes than achievable hitherto. To date, this has covered rapid oscillations in passive degassing through conduits and lava lakes, as well as puffing and explosions, facilitating exciting connections to be made for the first time between previously rather separate sub-disciplines of volcanology. Firstly, there has been corroboration between geophysical and degassing datasets at â1 Hz, expeditin…
A CO2-gas precursor to the March 2015 Villarrica volcano eruption
We present here the first volcanic gas compositional time-series taken prior to a paroxysmal eruption of Villarrica volcano (Chile). Our gas plume observations were obtained using a fully autonomous Multi-component Gas Analyser System (Multi-GAS) in the 3 month-long phase of escalating volcanic activity that culminated into the 3 March 2015 paroxysm, the largest since 1985. Our results demonstrate a temporal evolution of volcanic plume composition, from low CO$_2$/SO$_2$ ratios (0.65-2.7) during November 2014-January 2015 to CO$_2$/SO$_2$ ratios up to ≈ 9 then after. The H$_2$O/CO$_2$ ratio simultaneously declined to <38 in the same temporal interval. We use results of volatile saturatio…
Magmatic gas percolation through the old lava dome of El Misti volcano
International audience; The proximity of the major city of Arequipa to El Misti has focused attention on the hazards posed by the active volcano. Since its last major eruption in the fifteenth century, El Misti has experienced a series of modest phreatic eruptions and fluctuating fumarolic activity. Here, we present the first measurements of the compositions of gas emitted from the lava dome in the summit crater. The gas composition is found to be fairly dry with a H2O/SO2 molar ratio of 32 ± 3, a CO2/SO2 molar ratio of 2.7 ± 0.2, a H2S/SO2 molar ratio of 0.23 ± 0.02 and a H2/SO2 molar ratio of 0.012 ± 0.002. This magmatic gas signature with minimal evidence of hydrothermal or wall rock int…
Gas fluxes and compositions of two active volcanoes in Northern Chile: Lascar and Lastarria
The Central Andes Volcanic Zone of northern Chile comprises a ~1200 km long volcanic district extending from the Atacama region on the northe to the Arica and Parinacota region.Lascar and Lastarria are among the most actively degassing volcanoes of the several (more than 30) potentially active in the region. They both host persistent fumarolic fields and generate sustained plumes above the main craters. Here, we report on simultaneous in-situ and remote volcanic gas measurements aimed at obtaining the very first degassing budget for major volatiles released by these fumarolic fields. Using quick deployable scanning DOAS and SO2 camera systems we obtained time-averaged SO2 fluxes of ~ 500 t …
Isotopically (δ13C and δ18O) heavy volcanic plumes from Central Andean volcanoes: a field study
International audience; Stable isotopes of carbon and oxygen in volcanic gases are key tracers of volatile transfer between Earth's interior and atmosphere. Although important, these data are available for few volcanoes because they have traditionally been difficult to obtain and are usually measured on gas samples collected from fumaroles. We present new field measurements of bulk plume composition and stable isotopes (δ13CCO2 and δ18OH2O+CO2) carried out at three northern Chilean volcanoes using MultiGAS and isotope ratio infrared spectroscopy. Carbon and oxygen in magmatic gas plumes of Lastarria and Isluga volcanoes have δ13C in CO2 of +0.76‰ to +0.77‰ (VPDB), similar to slab carbonate;…
Recent advances in ground based ultraviolet remote sensing of volcanic SO2 fluxes
Gas measurements from the Costa Rica–Nicaragua volcanic segment suggest possible along-arc variations in volcanic gas chemistry
Obtaining accurate estimates of the CO2 output from arc volcanism requires a precise understanding of the potential along-arc variations in volcanic gas chemistry, and ultimately of the magmatic gas signature of each individual arc segment. In an attempt to more fully constrain the magmatic gas signature of the Central America Volcanic Arc (CAVA), we present here the results of a volcanic gas survey performed during March and April 2013 at five degassing volcanoes within the Costa Rica-Nicaragua volcanic segment (CNVS). Observations of the volcanic gas plume made with a multicomponent gas analyzer system (Multi-GAS) have allowed characterization of the CO2/SO2-ratio signature of the plumes …
Carbon dioxide diffuse emission and thermal energy release from hydrothermal systems at Copahue-Caviahue Volcanic Complex (Argentina)
Fil: Chiodini, Giovanni. Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna. Bologna, Italia. Fil: Cardellini, Carlo. Università degli Studi di Perugia, Dipartimento di Fisica e Geologia. Perugia, Italy. Fil: Lamberti, María C. Universidad de Buenos Aires. Instituto de Estudios Andinos. Buenos Aires, Argentina. Fil: Agusto, Mariano. Universidad de Buenos Aires. Instituto de Estudios Andinos. Buenos Aires, Argentina. Fil: Caselli, Alberto Tomás Universidad Nacional de Río Negro. Instituto de Investigación en Paleobiología y Geología. Río Negro. Argentina. Fil: Liccioli, Caterina. Universidad de Buenos Aires. Instituto de Estudios Andinos. Buenos Aires, Argentina. Fil: Tambure…
Protocols for UV camera volcanic SO2 measurements
Abstract Ultraviolet camera technology offers considerable promise for enabling 1 Hz timescale acquisitions of volcanic degassing phenomena, providing two orders of magnitude improvements on sampling frequencies from conventionally applied scanning spectrometer systems. This could, for instance enable unprecedented insights into rapid processes, such as strombolian explosions, and non-aliased corroboration with volcano geophysical data. The uptake of this technology has involved disparate methodological approaches, hitherto. As a means of expediting the further proliferation of such systems, we here study these diverse protocols, with the aim of suggesting those we consider optimal. In part…
Dynamics of mild strombolian activity on Mt. Etna
Abstract Here we report the first measurements of gas masses released during a rare period of strombolian activity at the Bocca Nuova crater, Mt. Etna, Sicily. UV camera data acquired for 195 events over an ≈ 27 minute period (27th July 2012) indicate erupted SO2 masses ranging from ≈ 0.1 to ≈ 14 kg per event, with corresponding total gas masses of ≈ 0.1 to 74 kg. Thus, the activity was characterised by more frequent and smaller events than typically associated with strombolian activity on volcanoes such as Stromboli. Events releasing larger measured gas masses were followed by relatively long repose periods before the following burst, a feature not previously reported on from gas measureme…
Correlation of oscillatory behaviour in Matlab using wavelets
Here we present a novel computational signal processing approach for comparing two signals of equal length and sampling rate, suitable for application across widely varying areas within the geosciences. By performing a continuous wavelet transform (CWT) followed by Spearman?s rank correlation coefficient analysis, a graphical depiction of links between periodicities present in the two signals is generated via two or three dimensional images. In comparison with alternate approaches, e.g., wavelet coherence, this technique is simpler to implement and provides far clearer visual identification of the inter-series relationships. In particular, we report on a Matlab? code which executes this tec…
Ratiocalc: Software for processing data from multicomponent volcanic gas analyzers
Portable gas analyzers have become a powerful tool for the real-time monitoring of volcanic gas composition over the last decade. Gas analyzers make it possible to retrieve in real-time the chemical composition of a fumarole system or a plume in an open-conduit volcano via periodic field-deployments or at permanent stations. The core of a multicomponent volcanic gas analyzer (MultiGAS) consists of spectroscopic and electrochemical sensors that are used to determine the concentrations of the most abundant volcanic gases (H2O, CO2, SO2, H2S, H2, CO and HCl) in a diluted plume and their mutual molar ratios. Processing such data is often difficult due to the high sensitivity of the sensors to e…
Dukono, the predominant source of volcanic degassing in Indonesia, sustained by a depleted Indian-MORB
Co-auteur étranger; International audience; Located on Halmahera island, Dukono is among the least known volcanoes in Indonesia. A compilation of the rare available reports indicates that this remote and hardly accessible volcano has been regularly in eruption since 1933, and has undergone nearly continuous eruptive manifestation over the last decade. The first study of its gas emissions, presented in this work, highlights a huge magmatic volatile contribution into the atmosphere, with an estimated annual output of about 290 kt of SO2, 5000 kt of H2O, 88 kt of CO2, 5 kt of H2S and 7 kt of H2. Assuming these figures are representative of the long-term continuous eruptive activity, then Dukon…
Exploring the explosive-effusive transition using permanent ultraviolet cameras
Understanding the mechanisms that cause effusive eruptions is the key to mitigating their associated hazard. Here, we combine results from permanent ultra-violet (UV) cameras, and from other geophysical observations (seismic very long period, thermal, and infrasonic activity), to characterize volcanic SO2 flux regime in the period prior, during, and after Stromboli's August-November 2014 effusive eruption. We show that, in the two months prior to effusion onset, the SO2 flux levels are two times average level. We explain this anomalously high SO2 regime as primarily determined by venting of rapidly rising, pressurized SO2-rich gas pockets, produced by strombolian explosions being more frequ…
Etna International Training School of Geochemistry. Science meets Practice
Also this year, the “Etna International Training School of Geochemistry. Science meets practice” took place at Mt. Etna, now in its fourth edition. The school was hosted in the historical Volcanological Observatory “Pizzi Deneri”, one of the most important sites of the INGV - Osservatorio Etneo for geochemical and geophysical monitoring. Mount Etna, located in eastern Sicily, is the largest active volcano in Europe and one of the most intensely degassing volcanoes of the world [Allard et al., 1991; Gerlach, 1991]. Mt Etna emits about 1.6 % of global H2O fluxes from arc volcanism [Aiuppa et al., 2008] and 10 % of global average volcanic emission of CO2 and SO2 [D’Alessandro et al., 1997; Cal…
Steam and gas emission rates from La Soufrière of Guadeloupe (Antilles arc): implications for the magmatic supply degassing during unrest
Since its last magmatic eruption in 1530 AD, La Soufrière andesitic volcano in Guadeloupe has displayed intense hydrothermal activity and six phreatic eruptive crises (the last of which, in 1976-1977, with 73000 evacuees). Here we report on the first direct quantification of gas plume emissions from La Soufrière summit vents, which gradually intensified during the past 20 years. Gas fluxes were determined in 2006 then 2012 [1] by measuring the horizontal and vertical distribution of volcanic gas concentrations in the air-diluted plume, the composition of the hot fumarolic fluid at exit (108°C), and scaling to the speed of plume transport (in situ measurements and FLIR imaging). We first dem…
Changes in SO2 Flux Regime at Mt. Etna Captured by Automatically Processed Ultraviolet Camera Data
We used a one-year long SO2 flux record, which was obtained using a novel algorithm for real-time automatic processing of ultraviolet (UV) camera data, to characterize changes in degassing dynamics at the Mt. Etna volcano in 2016. These SO2 flux records, when combined with independent thermal and seismic evidence, allowed for capturing switches in activity from paroxysmal explosive eruptions to quiescent degassing. We found SO2 fluxes 1.5−2 times higher than the 2016 average (1588 tons/day) during the Etna’s May 16−25 eruptive paroxysmal activity, and mild but detectable SO2 flux increases more than one month before its onset. The SO2 flux typically peaked during a lava fo…
High time resolution fluctuations in volcanic carbon dioxide degassing from Mount Etna
Abstract We report here on the first record of carbon dioxide gas emission rates from a volcano, captured at ≈ 1 Hz. These data were acquired with a novel technique, based on the integration of UV camera observations (to measure SO2 emission rates) and field portable gas analyser readings of plume CO2/SO2 ratios. Our measurements were performedat the North East crater of Mount Etna, southern Italy, and the data reveal strong variability in CO2 emissions over timescales of tens to hundreds of seconds, spanning two orders of magnitude. This carries importantimplications for attempts to constrain global volcanic CO2 release to the atmosphere, and will lead to an increased insight into short te…
Spectroscopic capture of 1 Hz volcanic SO2fluxes and integration with volcano geophysical data
[1] Here we present a novel spectroscopic approach to capturing, with unprecedented time resolution and accuracy, volcanic SO2 fluxes. This is based on two USB2000 spectrometers, coupled to cylindrical lens telescopes, each collecting light which has transited horizontal sections of the rising plume. We report on field data from Stromboli volcano, in which the entire emission rate from the volcano was measured, as well as flux signatures associated with individual crater explosions. The latter were integrated with seismic and thermal data, demonstrating correlations in both cases, and representing the first such geophysical-geochemical data corroboration on this timescale. Such a holistic e…
Tracking Formation of a Lava Lake From Ground and Space: Masaya Volcano (Nicaragua), 2014-2017
A vigorously degassing lava lake appeared inside the Santiago pit crater of Masaya volcano (Nicaragua) in December 2015, after years of degassing with no (or minor) incandescence. Here we present an unprecedented-long (3 years) and continuous volcanic gas record that instrumentally characterizes the (re)activation of the lava lake. Our results show that, before appearance of the lake, the volcanic gas plume composition became unusually CO 2 rich, as testified by high CO 2 /SO 2 ratios (mean: 12.2 ± 6.3) and low H 2 O/CO 2 ratios (mean: 2.3 ± 1.3). The volcanic CO 2 flux also peaked in November 2015 (mean: 81.3 ± 40.6 kg/s; maximum: 247 kg/s). Using results of magma degassing models and budg…
New insights into the magmatic-hydrothermal system and volatile budget of Lastarria volcano, Chile: Integrated results from the 2014 IAVCEI CCVG 12th Volcanic Gas Workshop
Recent geophysical evidence for large-scale regional crustal inflation and localized crustal magma intrusion has made Lastarria volcano (northern Chile) the target of numerous geological, geophysical, and geochemical studies. The chemical composition of volcanic gases sampled during discrete campaigns from Lastarria volcano indicated a well-developed hydrothermal system from direct fumarole samples in A.D. 2006, 2008, and 2009, and shallow magma degassing using measurements from in situ plume sampling techniques in 2012. It is unclear if the differences in measured gas compositions and resulting interpretations were due to artifacts of the different sampling methods employed, short-term exc…
Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes
[i] We report the first measurements of volcanic gases with an unmanned aerial vehicle (UAV). The data were collected at La Fossa crater, Vulcano, Italy, during April 2007, with a helicopter UAV of 3 kg payload, carrying an ultraviolet spectrometer for remotely sensing the SO 2 flux (8.5 Mg d- 1 ), and an infrared spectrometer, and electrochemical sensor assembly for measuring the plume CO 2 /SO 2 ratio; by multiplying these data we compute a CO 2 flux of 170 Mg d -1 . Given the deeper exsolution of carbon dioxide from magma, and its lower solubility in hydro-thermal systems, relative to SO 2 , the ability to remotely measure CO 2 fluxes is significant, with promise to provide more profound…
RAPID SENSING OF VOLCANIC SO2 FLUXES USING A DUAL ULTRAVIOLET CAMERA SYSTEM: NEW TECHNIQUES AND MEASUREMNETS AT SOUTHERN ITALIAN VOLCANOES.
Mercury emissions from soils and fumaroles of Nea Kameni volcanic centre, Santorini (Greece)
There have been limited studies to date targeting mercury emissions from volcanic fumarolic systems, and no mercury flux data exist for soil or fumarolic emissions at Santorini volcanic complex, Greece. We present results from the first geochemical survey of Hg and major volatile (CO2, H2S, H2O and H-2) concentrations and fluxes in the fumarolic gases released by the volcanic/hydrothermal system of Nea Kameni islet; the active volcanic center of Santorini. These data were obtained using a portable mercury spectrometer (Lumex 915+) for gaseous elemental mercury (GEM) determination, and a Multi-component Gas Analyzer System (Multi-GAS) for major volatiles. Gaseous Elemental Mercury (GEM) conc…
Gas mass derived by infrasound and UV cameras: Implications for mass flow rate
Abstract Mass Flow Rate is one of the most crucial eruption source parameter used to define magnitude of eruption and to quantify the ash dispersal in the atmosphere. However, this parameter is in general difficult to be derived and no valid technique has been developed yet to measure it in real time with sufficient accuracy. Linear acoustics has been applied to infrasonic pressure waves generated by explosive eruptions to indirectly estimate the gas mass erupted and then the mass flow rate. Here, we test on Stromboli volcano (Italy) the performance of such methodology by comparing the acoustic derived results with independent gas mass estimates obtained with UV cameras, and constraining th…
Understanding the SO 2 degassing budget of Mt Etna’s paroxysms: First clues from the december 2015 sequence
The persistent open-vent activity of basaltic volcanoes is periodically interrupted by spectacular but hazardous paroxysmal explosions. The rapid transition from quiescence to explosive eruption poses a significant challenge for volcanic hazard assessment and mitigation, and improving our understanding of the processes that trigger these paroxysmal events is critical. Although magmatic gas is unquestionably the driver, direct measurements of a paroxysm’s gas flux budget have remained challenging, to date. A particularly violent paroxysmal sequence took place on Etna on December 2015, intermittently involving all summit craters, especially the Voragine (VOR) that had previously displayed no…
The Hydrothermal System of the Campi Flegrei Caldera, Italy
In this chapter, we review the state-of-the-art of the Campi Flegrei caldera (Naples) hydrothermal system, and its behaviour during the last decades. The Campi Flegrei caldera has been undergoing unrest since 1950, as evidenced by recurrent bradyseismic episodes accompanied by manifest changes in the degassing budget, degassing patterns and in the composition of the fumarolic fluids. In-depth analysis of geochemical and geophysical datasets acquired over decades has allowed identification of the mechanisms driving volcanic unrest at the Campi Flegrei caldera. We propose a conceptual model of the hydrothermal system feeding Solfatara fumaroles, where geochemical information is integrated wit…
Passive vs. active degassing modes at an open-vent volcano (Stromboli, Italy)
Abstract We report here on a UV-camera based field experiment performed on Stromboli volcano during 7 days in 2010 and 2011, aimed at obtaining the very first simultaneous assessment of all the different forms (passive and active) of SO 2 release from an open-vent volcano. Using the unprecedented spatial and temporal resolution of the UV camera, we obtained a 0.8 Hz record of the total SO 2 flux from Stromboli over a timeframe of ∼14 h, which ranged between 0.4 and 1.9 kg s −1 around a mean value of 0.7 kg s −1 and we concurrently derived SO 2 masses for more than 130 Strombolian explosions and 50 gas puffs. From this, we show erupted SO 2 masses have a variability of up to one order of mag…
New Techniques for real-time volcanic gas measurements: the UV camera
In this study, I take advantage of a novel technique - the UV camera - to image SO2 emissions from the Italian volcanoes with improved high temporal resolution. Here, this technique has been updated to a new configuration (dual-camera system), which combines higher temporal resolution (0.5-1.2 Hz) and improved accuracy relative to the single-camera setup. The methodology has been extensively tested and improved, whilst developing a user-friendly control software (Vulcamera) and a calibration technique (in tandem DOAS-SO2 quartz cells calibration), which simplify instrument deployment, acquisition and data analysis. A first application was focused on SO2 gas flux measurements at individual fuma…