6533b871fe1ef96bd12d1130

RESEARCH PRODUCT

Gas mass derived by infrasound and UV cameras: Implications for mass flow rate

Dario Delle DonneDario Delle DonneAlessandro AiuppaAlessandro AiuppaGiancarlo TamburelloGiorgio LacannaMaurizio RipepeMarcello Bitetto

subject

010504 meteorology & atmospheric sciencesInfrasoundMass flowVolcano acousticMagnitude (mathematics)ThrustGeophysicsMass flow rate010502 geochemistry & geophysics01 natural sciencesAtmosphereGeophysicsSulphur dioxide cameraThermal imagery13. Climate actionGeochemistry and PetrologyMass flow rateRange (statistics)WaveformGeology0105 earth and related environmental sciences

description

Abstract Mass Flow Rate is one of the most crucial eruption source parameter used to define magnitude of eruption and to quantify the ash dispersal in the atmosphere. However, this parameter is in general difficult to be derived and no valid technique has been developed yet to measure it in real time with sufficient accuracy. Linear acoustics has been applied to infrasonic pressure waves generated by explosive eruptions to indirectly estimate the gas mass erupted and then the mass flow rate. Here, we test on Stromboli volcano (Italy) the performance of such methodology by comparing the acoustic derived results with independent gas mass estimates obtained with UV cameras, and constraining the acoustic source by thermal imagery. We show that different acoustic methods give comparable total gas masses in the 2 to 1425 kg range, which are fully consistent with the gas masses derived by UV cameras and previous direct SO 2 measurements. We show that total erupted gas mass, estimated by infrasound is not simply a function of the initial pressure, but rather the full infrasonic waveform should be considered. Thermal imagery provides evidence that infrasound is generated during the entire gas thrust phase. We provide examples to show how total gas masses derived by infrasonic signals can be affected by large uncertainties if duration of the signal is neglected. Only when duration of infrasound is included, the best correlation (0.8) with UV cameras and the 1:1 direct linear proportionality is obtained. Our results open new perspective for remotely derived gas mass and mass flow rates from acoustic signals.

https://doi.org/10.1016/j.jvolgeores.2016.06.015