0000000000063835
AUTHOR
Maurizio Ripepe
Remote monitoring of building oscillation modes by means of real-time Mid Infrared Digital Holography
AbstractNon-destructive measurements of deformations are a quite common application of holography but due to the intrinsic limits in the interferometric technique, those are generally confined only to small targets and in controlled environment. Here we present an advanced technique, based on Mid Infrared Digital Holography (MIR DH), which works in outdoor conditions and provides remote and real-time information on the oscillation modes of large engineering structures. Thanks to the long wavelength of the laser radiation, large areas of buildings can be simultaneously mapped with sub-micrometric resolution in terms of their amplitude and frequency oscillation modes providing all the modal p…
Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system
Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption.
Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrat…
Shallow magma dynamics at open-vent volcanoes tracked by coupled thermal and SO2 observations
Open-vent volcanic activity is typically sustained by ascent and degassing of shallow magma, in which the rate of magma supply to the upper feeding system largely exceeds the rate of magma eruption. Such unbalance between supplied (input) and erupted (output) magma rates is thought to result from steady, degassing-driven, convective magma overturning in a shallow conduit/feeding dyke. Here, we characterize shallow magma circulation at Stromboli volcano by combining independent observations of heat (Volcanic Radiative Power; via satellite images) and gas (SO2, via UV camera) output in a temporal interval (from August 1, 2018 to April 30, 2020) encompassing the summer 2019 effusive eruption a…
Ground deformation reveals the scale-invariant conduit dynamics driving explosive basaltic eruptions
The mild activity of basaltic volcanoes is punctuated by violent explosive eruptions that occur without obvious precursors. Modelling the source processes of these sudden blasts is challenging. Here, we use two decades of ground deformation (tilt) records from Stromboli volcano to shed light, with unprecedented detail, on the short-term (minute-scale) conduit processes that drive such violent volcanic eruptions. We find that explosive eruptions, with source parameters spanning seven orders of magnitude, all share a common pre-blast ground inflation trend. We explain this exponential inflation using a model in which pressure build-up is caused by the rapid expansion of volatile-rich magma ri…
Frequency Based Detection and Monitoring of Small Scale Explosive Activity by Comparing Satellite and Ground Based Infrared Observations at Stromboli Volcano, Italy
Abstract Thermal activity is a common precursor to explosive volcanic activity. The ability to use these thermal precursors to monitor the volcano and obtain early warning about upcoming activity is beneficial for both human safety and infrastructure security. By using a very reliably active volcano, Stromboli Volcano in Italy, a method has been developed and tested to look at changes in the frequency of small scale explosive activity and how this activity changes prior to larger, ash producing explosive events. Thermal camera footage was used to designate parameters for typical explosions at Stromboli (size of spatter field, cooling rate, frequency of explosions) and this information was a…
Hot-spot detection and characterization of strombolian activity from MODIS infrared data
Identifying and characterizing strombolian activity from space is a challenging task for satellite-based infrared systems. Stromboli volcano is a natural laboratory that offers a unique opportunity for refining thermal remote-sensing applications that involve transient phenomena and small to moderate hot-spots. A new simple and fast algorithm gave us the opportunity to revisit the MODIS-derived thermal output at Stromboli volcano over the last 13 years. The new algorithm includes both night-time and daytime data and shows high performance with the detection of small-amplitude thermal anomalies ( 1000 MW). The ...
Ash-plume dynamics and eruption source parameters by infrasound and thermal imagery: The 2010 Eyjafjallajökull eruption
During operational ash-cloud forecasting, prediction of ash concentration and total erupted mass directly depends on the determination of mass eruption rate (MER), which is typically inferred from plume height. Uncertainties for plume heights are large, especially for bent-over plumes in which the ascent dynamics are strongly affected by the surrounding wind field. Here we show how uncertainties can be reduced if MER is derived directly from geophysical observations of source dynamics. The combination of infrasound measurements and thermal camera imagery allows for the infrasonic type of source to be constrained (a dipole in this case) and for the plume exit velocity to be calculated (54–14…
Automatic landslides detection on Stromboli volcanic Island
Spatio-temporal changes in degassing behavior at Stromboli volcano derived from two co-exposed SO2 camera stations
Improving volcanic gas monitoring techniques is central to better understanding open-vent, persistently degassing volcanoes. SO2 cameras are increasingly used in volcanic gas studies, but observations are commonly limited to one single camera alone viewing the volcanic plume from a specific viewing direction. Here, we report on high frequency (0.5 Hz) systematic measurements of the SO2 flux at Stromboli, covering a 1-year long observation period (June 2017-June 2018), obtained from two permanent SO2 cameras using the same automated algorithm, but imaging the plume from two different viewing directions. Our aim is to experimentally validate the robustness of automatic SO2 camera for volcano …
Volcanic CO2 tracks the incubation period of basaltic paroxysms
Description
The summit hydrothermal system of Stromboli: New insights from self-potential, temperature, CO2 and fumarolic fluids measurements, with structural and monitoring implications.
International audience; Accurate and precisely located self-potential (SP), temperature (T) and COi measurements were carried out in the summit area of Stromboli along 72 straight profiles. SP data were acquired every metre and T data every 2.5 m. CO2 concentrations were acquired with the same density as T, but only along seven profiles. The high density of data and the diversity of the measured parameters allows us to study structures and phenomena at a scale rarely investigated. The shallow summit hydrothermal activity (Pizzo-Fossa area) is indicated by large positive SP, T and COi anomalies. These anomalies are focused on crater faults, suggesting that the fracture zones are more permeab…
Tracking dynamics of magma migration in open-conduit systems
Open-conduit volcanic systems are typically characterized by unsealed volcanic conduits feeding permanent or quasi-permanent volcanic activity. This persistent activity limits our ability to read changes in the monitored parameters, making the assessment of possible eruptive crises more difficult. We show how an integrated approach to monitoring can solve this problem, opening a new way to data interpretation. The increasing rate of explosive transients, tremor amplitude, thermal emissions of ejected tephra, and rise of the very-long-period (VLP) seismic source towards the surface are interpreted as indicating an upward migration of the magma column in response to an increased magma input r…
Radiative heat power at Stromboli volcano during 2000–2011: Twelve years of MODIS observations
Abstract Twelve years of night-time MODIS (Moderate Resolution Imaging Spectroradiometer) observations, has been analysed to detect and quantify the radiative heat power emitted by Stromboli volcano (from March 2000 to September 2011). Using an accurate background subtraction of the MODIS signal at 4 μm, we were able to discriminate two main regimes of thermal radiation, related to different levels of volcanic activity. Effusive eruptions (occurred on December 28, 2002 and February 27, 2007) radiated at an average of ~ 186 MW with a frequency of alert detection of 50–95%. Conversely, during the typical strombolian activity, an average of ~ 9 MW is radiated, with a frequency of alert detecti…
Volcanic plume and bomb field masses from thermal infrared camera imagery
International audience; Masses erupted during normal explosions at Stromboli volcano (Italy) are notoriously difficult to measure. We present a method that uses thermal infrared video for cooling bomb fields to obtain the total power emitted by all hot particles emitted during an explosion. A given mass of magma (M) will emit a finite amount of thermal power, defined by M cp(Te−T0), cp and Te being magma specific heat capacity and temperature, and T0 being ambient temperature. We use this relation to convert the total power emitted by the bomb field to the mass required to generate that power. To do this we extract power flux curves for the field and integrate this through time to obtain to…
Seismic sources and stress transfer interaction among axial normal faults and external thrust fronts in the Northern Apennines (Italy): A working hypothesis based on the 1916–1920 time–space cluster of earthquakes
In this study we analyse the main potential seismic sources in some axial and frontal sectors of the Northern Apennines, in Italy. This region was hit by a peculiar series of earthquakes that started in 1916 on the external thrust fronts near Rimini. Later, in 1917-1921, seismicity (up to Mw approximate to 6.5) shifted into the axial zone and clearly migrated north-westward, along the belt of active normal faults. The collection of fault-slip data focused on the active normal faults potentially involved in this earthquake series. The acquired data allowed us to better characterize the geometry and kinematics of the faults. In a few instances, the installation of local seismic networks durin…
Exploring the explosive-effusive transition using permanent ultraviolet cameras
Understanding the mechanisms that cause effusive eruptions is the key to mitigating their associated hazard. Here, we combine results from permanent ultra-violet (UV) cameras, and from other geophysical observations (seismic very long period, thermal, and infrasonic activity), to characterize volcanic SO2 flux regime in the period prior, during, and after Stromboli's August-November 2014 effusive eruption. We show that, in the two months prior to effusion onset, the SO2 flux levels are two times average level. We explain this anomalously high SO2 regime as primarily determined by venting of rapidly rising, pressurized SO2-rich gas pockets, produced by strombolian explosions being more frequ…
Forecasting Effusive Dynamics and Decompression Rates by Magmastatic Model at Open-vent Volcanoes
AbstractEffusive eruptions at open-conduit volcanoes are interpreted as reactions to a disequilibrium induced by the increase in magma supply. By comparing four of the most recent effusive eruptions at Stromboli volcano (Italy), we show how the volumes of lava discharged during each eruption are linearly correlated to the topographic positions of the effusive vents. This correlation cannot be explained by an excess of pressure within a deep magma chamber and raises questions about the actual contributions of deep magma dynamics. We derive a general model based on the discharge of a shallow reservoir and the magmastatic crustal load above the vent, to explain the linear link. In addition, we…
Blast waves from violent explosive activity at Yasur Volcano, Vanuatu
[1] Infrasonic and seismic waveforms were collected during violent strombolian activity at Yasur Volcano (Vanuatu). Averaging ~3000 seismic events showed stable waveforms, evidencing a low-frequency (0.1–0.3 Hz) signal preceding ~5–6 s the explosion. Infrasonic waveforms were mostly asymmetric with a sharp compressive (5–106 Pa) onset, followed by a small long-lasting rarefaction phase. Regardless of the pressure amplitude, the ratio between the positive and negative phases was constant. These waveform characteristics closely resembled blast waves. Infrared imagery showed an apparent cold spherical front ~20 m thick, which moved between 342 and 405 m/s before the explosive hot gas/fragments…
Changes in SO2 Flux Regime at Mt. Etna Captured by Automatically Processed Ultraviolet Camera Data
We used a one-year long SO2 flux record, which was obtained using a novel algorithm for real-time automatic processing of ultraviolet (UV) camera data, to characterize changes in degassing dynamics at the Mt. Etna volcano in 2016. These SO2 flux records, when combined with independent thermal and seismic evidence, allowed for capturing switches in activity from paroxysmal explosive eruptions to quiescent degassing. We found SO2 fluxes 1.5−2 times higher than the 2016 average (1588 tons/day) during the Etna’s May 16−25 eruptive paroxysmal activity, and mild but detectable SO2 flux increases more than one month before its onset. The SO2 flux typically peaked during a lava fo…
Infrasonic Early Warning System for Explosive Eruptions
Spectroscopic capture of 1 Hz volcanic SO2fluxes and integration with volcano geophysical data
[1] Here we present a novel spectroscopic approach to capturing, with unprecedented time resolution and accuracy, volcanic SO2 fluxes. This is based on two USB2000 spectrometers, coupled to cylindrical lens telescopes, each collecting light which has transited horizontal sections of the rising plume. We report on field data from Stromboli volcano, in which the entire emission rate from the volcano was measured, as well as flux signatures associated with individual crater explosions. The latter were integrated with seismic and thermal data, demonstrating correlations in both cases, and representing the first such geophysical-geochemical data corroboration on this timescale. Such a holistic e…
The 15 March 2007 explosive crisis at Stromboli Volcano, Italy: assessing physical parameters through a multidisciplinary approach
Basaltic volcanoes are dominated by lava emission and mild explosive activity. Nevertheless, many basaltic systems exhibit, from time to time, poorly documented and little-understood violent explosions. A short-lived, multiblast explosive crisis (paroxysmal explosion) occurred on 15 March 2007 during an effusive eruptive crisis at Stromboli (Italy). The explosive crisis, which started at 20:38:14 UT, had a total duration of ∼5 min. The combined use of multiparametric data collected by the permanent instrumental networks (seismic, acoustic, and thermal records) and a field survey carried out immediately after the event enabled us to constrain the eruptive dynamics and quantify physical param…
Gas mass derived by infrasound and UV cameras: Implications for mass flow rate
Abstract Mass Flow Rate is one of the most crucial eruption source parameter used to define magnitude of eruption and to quantify the ash dispersal in the atmosphere. However, this parameter is in general difficult to be derived and no valid technique has been developed yet to measure it in real time with sufficient accuracy. Linear acoustics has been applied to infrasonic pressure waves generated by explosive eruptions to indirectly estimate the gas mass erupted and then the mass flow rate. Here, we test on Stromboli volcano (Italy) the performance of such methodology by comparing the acoustic derived results with independent gas mass estimates obtained with UV cameras, and constraining th…
Modeling Volcanic Eruption Parameters by Near-Source Internal Gravity Waves
AbstractVolcanic explosions release large amounts of hot gas and ash into the atmosphere to form plumes rising several kilometers above eruptive vents, which can pose serious risk on human health and aviation also at several thousands of kilometers from the volcanic source. However the most sophisticate atmospheric models and eruptive plume dynamics require input parameters such as duration of the ejection phase and total mass erupted to constrain the quantity of ash dispersed in the atmosphere and to efficiently evaluate the related hazard. The sudden ejection of this large quantity of ash can perturb the equilibrium of the whole atmosphere triggering oscillations well below the frequencie…
Understanding the SO 2 degassing budget of Mt Etna’s paroxysms: First clues from the december 2015 sequence
The persistent open-vent activity of basaltic volcanoes is periodically interrupted by spectacular but hazardous paroxysmal explosions. The rapid transition from quiescence to explosive eruption poses a significant challenge for volcanic hazard assessment and mitigation, and improving our understanding of the processes that trigger these paroxysmal events is critical. Although magmatic gas is unquestionably the driver, direct measurements of a paroxysm’s gas flux budget have remained challenging, to date. A particularly violent paroxysmal sequence took place on Etna on December 2015, intermittently involving all summit craters, especially the Voragine (VOR) that had previously displayed no…
Passive vs. active degassing modes at an open-vent volcano (Stromboli, Italy)
Abstract We report here on a UV-camera based field experiment performed on Stromboli volcano during 7 days in 2010 and 2011, aimed at obtaining the very first simultaneous assessment of all the different forms (passive and active) of SO 2 release from an open-vent volcano. Using the unprecedented spatial and temporal resolution of the UV camera, we obtained a 0.8 Hz record of the total SO 2 flux from Stromboli over a timeframe of ∼14 h, which ranged between 0.4 and 1.9 kg s −1 around a mean value of 0.7 kg s −1 and we concurrently derived SO 2 masses for more than 130 Strombolian explosions and 50 gas puffs. From this, we show erupted SO 2 masses have a variability of up to one order of mag…