0000000001063240
AUTHOR
Marta Moreno Torres
Phosphoproteomic analysis accross the yeast life cycle reveals homeostatic regulation of fatty acyl chain-length by phosphorylation of the fatty acid synthase complex
The ability to remodel lipid metabolism under changing conditions is pivotal for cellular functionality and homeostasis. Here, we characterize the regulatory landscape of phosphorylation-based signaling events across the life cycle of Saccharomyces cerevisiae and determine its impact on the regulation of lipid metabolism. Our data show that 50 lipid metabolic proteins are differentially phosphorylated as cells transit between different physiological states. To identify functional phosphosites, we devised a strategy where multiple phosphosites are simultaneously mutated into phosphomimetic or phosphodeficient alleles and mutants are phenotyped by in-depth lipidomics flux analysis. This uncov…
TORC1 coordinates the conversion of Sic1 from a target to an inhibitor of cyclin-CDK-Cks1
Eukaryotic cell cycle progression through G(1)-S is driven by hormonal and growth-related signals that are transmitted by the target of rapamycin complex 1 (TORC1) pathway. In yeast, inactivation of TORC1 restricts G(1)-S transition due to the rapid clearance of G(1) cyclins (Cln) and the stabilization of the B-type cyclin (Clb) cyclin-dependent kinase (CDK) inhibitor Sic1. The latter mechanism remains mysterious but requires the phosphorylation of Sic1-Thr(173) by Mpk1 and inactivation of the Sic1-pThr(173)-targeting phosphatase (PP2A(Cdc55)) through greatwall kinase-activated endosulfines. Here we show that the Sic1-pThr(173) residue serves as a specific docking site for the CDK phospho-a…
The assessment of the potential hepatotoxicity of new drugs by in vitro metabolomics
Drug hepatotoxicity assessment is a relevant issue both in the course of drug development as well as in the post marketing phase. The use of human relevant in vitro models in combination with powerful analytical methods (metabolomic analysis) is a promising approach to anticipate, as well as to understand and investigate the effects and mechanisms of drug hepatotoxicity in man. The metabolic profile analysis of biological liver models treated with hepatotoxins, as compared to that of those treated with non-hepatotoxic compounds, provides useful information for identifying disturbed cellular metabolic reactions, pathways, and networks. This can later be used to anticipate, as well to assess,…