0000000001064550

AUTHOR

Kaspars Kaprans

showing 3 related works from this author

Wood and Black Liquor-Based N-Doped Activated Carbon for Energy Application

2021

The research was funded by the Latvian Council of Science project “Nanostructured Nitrogenated Carbon Materials as Promoters in Energy Harvesting and Storage Technologies”, project No LZP-2018/1-0194, “New biomass origin materials hybrid carbon composites for energy storage” project No LZP-2020/2-0019 and postdoc project “Nitrogen and phosphorus-containing biomass based activated carbons for fuel cells and supercapacitors” project No 1.1.1.2/VIAA/4/20/596.

Materials scienceGeography Planning and Developmentchemistry.chemical_elementBiomassLi-ion batteriesTJ807-83002 engineering and technologyfuel cellsManagement Monitoring Policy and LawPorous structure010402 general chemistryTD194-1957. Clean energy01 natural sciencesRenewable energy sourcesCatalysismedicineGE1-350BiomassCharFuel cellsActivated carbonsSupercapacitorporous structurebiomassactivated carbonsEnvironmental effects of industries and plantsRenewable Energy Sustainability and the EnvironmentNanoporous021001 nanoscience & nanotechnology0104 chemical sciencesEnvironmental sciencesChemical engineeringchemistry13. Climate action:NATURAL SCIENCES [Research Subject Categories]0210 nano-technologyCarbonBlack liquorActivated carbonmedicine.drugSustainability
researchProduct

Electrophoretic Nanocrystalline Graphene Film Electrode for Lithium Ion Battery

2015

Graphene sheets were fabricated by electrophoretic deposition method from water suspension of graphene oxide followed by thermal reduction. The formation of nanocrystalline graphene sheets has been confirmed by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The electrochemical performance of graphene sheets as anode material for lithium ion batteries was evaluated by cycling voltammetry, galvanostatic charge-discharge cycling, and electrochemical impedance spectroscopy. Fabricated graphene sheets exhibited high discharge capacity of about 1120 mAhg−1 and demonstrated good reversibility of lithium intercalation and deintercalation in graphene sheet film with capacity…

Materials scienceGrapheneGraphene foamInorganic chemistrychemistry.chemical_elementNanocrystalline materialLithium-ion batterylaw.inventionElectrophoretic depositionchemistryChemical engineeringlawLithiumGraphene nanoribbonsGraphene oxide paperIOP Conference Series: Materials Science and Engineering
researchProduct

Electrophoretically deposited α-Fe2O3 and TiO2 composite anchored on rGO with excellent cycle performance as anode for lithium ion batteries

2018

Abstract Two nanostructured oxides, α-Fe2O3 and TiO2 with a particle diameters 50 nm and 21 nm, were mixed with graphene oxide (GO). Composite thin films on a stainless steel substrate were obtained by electrophoretic deposition (EPD) procedure from water suspensions: α-Fe2O3/GO, TiO2/GO and α-Fe2O3/TiO2/GO. Subsequently reduction of as-prepared thin films was performed. Thicknesses of acquired films were evaluated in the range of 2–6 μm. Structure and morphology were investigated as well as electrochemical properties of all samples were studied. The results revealed that α-Fe2O3/TiO2/rGO (in this article denoted as FTGO) exhibited the specific discharge capacity of 790 mAh·g−1 after 150 cy…

Materials scienceGrapheneComposite numberOxidechemistry.chemical_element02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesAnodelaw.inventionchemistry.chemical_compoundElectrophoretic depositionChemical engineeringchemistrylawGeneral Materials ScienceLithiumThin film0210 nano-technologyFaraday efficiencySolid State Ionics
researchProduct